Revealing an outward-facing open conformational state in a CLC Cl-/H+ exchange transporter

  1. Chandra M Khantwal
  2. Sherwin J Abraham
  3. Wei Han
  4. Tao Jiang
  5. Tanmay S Chavan
  6. Ricky C Cheng
  7. Shelley M Elvington
  8. Corey W Liu
  9. Irimpan I Mathews
  10. Richard A Stein
  11. Hassane S Mchaourab
  12. Emad Tajkhorshid
  13. Merritt Maduke  Is a corresponding author
  1. Stanford University School of Medicine, United States
  2. University of Illinois at Urbana-Champaign, United States
  3. Stanford University, United States
  4. Vanderbilt University, United States

Abstract

CLC secondary active transporters exchange Cl- for H+. Crystal structures have suggested that the conformational change from occluded to outward-facing states is unusually simple, involving only the rotation of a conserved glutamate (Gluex) upon its protonation. Using 19F NMR, we show that as [H+] is increased to protonate Gluex and enrich the outward-facing state, a residue ~20 Å away from Gluex, near the subunit interface, moves from buried to solvent-exposed. Consistent with functional relevance of this motion, constriction via inter-subunit cross-linking reduces transport. Molecular dynamics simulations indicate that the cross-link dampens extracellular gate-opening motions. In support of this model, mutations that decrease steric contact between Helix N (part of the extracellular gate) and Helix P (at the subunit interface) remove the inhibitory effect of the cross-link. Together, these results demonstrate the formation of a previously uncharacterized 'outward-facing open' state, and highlight the relevance of global structural changes in CLC function.

Article and author information

Author details

  1. Chandra M Khantwal

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sherwin J Abraham

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Wei Han

    Department of Biochemistry, College of Medicine, Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tao Jiang

    Department of Biochemistry, College of Medicine, Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Tanmay S Chavan

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ricky C Cheng

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Shelley M Elvington

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Corey W Liu

    Stanford Magnetic Resonance Laboratory, Stanford University School of Medicine, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Irimpan I Mathews

    Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Richard A Stein

    Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Hassane S Mchaourab

    Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Emad Tajkhorshid

    Department of Biochemistry, College of Medicine, Center for Biophysics and Computational Biology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Merritt Maduke

    Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
    For correspondence
    maduke@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Khantwal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,405
    views
  • 662
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chandra M Khantwal
  2. Sherwin J Abraham
  3. Wei Han
  4. Tao Jiang
  5. Tanmay S Chavan
  6. Ricky C Cheng
  7. Shelley M Elvington
  8. Corey W Liu
  9. Irimpan I Mathews
  10. Richard A Stein
  11. Hassane S Mchaourab
  12. Emad Tajkhorshid
  13. Merritt Maduke
(2016)
Revealing an outward-facing open conformational state in a CLC Cl-/H+ exchange transporter
eLife 5:e11189.
https://doi.org/10.7554/eLife.11189

Share this article

https://doi.org/10.7554/eLife.11189

Further reading

    1. Structural Biology and Molecular Biophysics
    Bradley P Clarke, Alexia E Angelos ... Yi Ren
    Research Article

    In eukaryotes, RNAs transcribed by RNA Pol II are modified at the 5′ end with a 7-methylguanosine (m7G) cap, which is recognized by the nuclear cap binding complex (CBC). The CBC plays multiple important roles in mRNA metabolism, including transcription, splicing, polyadenylation, and export. It promotes mRNA export through direct interaction with a key mRNA export factor, ALYREF, which in turn links the TRanscription and EXport (TREX) complex to the 5′ end of mRNA. However, the molecular mechanism for CBC-mediated recruitment of the mRNA export machinery is not well understood. Here, we present the first structure of the CBC in complex with an mRNA export factor, ALYREF. The cryo-EM structure of CBC-ALYREF reveals that the RRM domain of ALYREF makes direct contact with both the NCBP1 and NCBP2 subunits of the CBC. Comparing CBC-ALYREF with other cellular complexes containing CBC and/or ALYREF components provides insights into the coordinated events during mRNA transcription, splicing, and export.

    1. Structural Biology and Molecular Biophysics
    Julia Belyaeva, Matthias Elgeti
    Review Article

    Under physiological conditions, proteins continuously undergo structural fluctuations on different timescales. Some conformations are only sparsely populated, but still play a key role in protein function. Thus, meaningful structure–function frameworks must include structural ensembles rather than only the most populated protein conformations. To detail protein plasticity, modern structural biology combines complementary experimental and computational approaches. In this review, we survey available computational approaches that integrate sparse experimental data from electron paramagnetic resonance spectroscopy with molecular modeling techniques to derive all-atom structural models of rare protein conformations. We also propose strategies to increase the reliability and improve efficiency using deep learning approaches, thus advancing the field of integrative structural biology.