Cellular coordination underpins rapid reversals in gliding filamentous cyanobacteria and its loss results in plectonemes

  1. School of Life Sciences, University of Warwick
  2. Department of Physics and Astronomy, University of Padova, Via Marzolo 8, I-35131 Padova, Italy and INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy
  3. Departamento de Estructura de la Materia, Física Termica y Electronica, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
  4. Instituto Mediterráneo de Estudios Avanzados, IMEDEA, 07190 Esporles, Illes Balears, Spain

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Irene Giardina
    Università Sapienza, Rome, Italy
  • Senior Editor
    Felix Campelo
    Institute of Photonic Sciences, Barcelona, Spain

Reviewer #1 (Public review):

Summary:

The authors use microscopy experiments to track the gliding motion of filaments of the cyanobacteria Fluctiforma draycotensis. They find that filament motion consists of back-and-forth trajectories along a "track", interspersed with reversals of movement direction, with no clear dependence between filament speed and length. It is also observed that longer filaments can buckle and form plectonemes. A computational model is used to rationalize these findings.

Strengths:

Much work in this field focuses on molecular mechanisms of motility; by tracking filament dynamics this work helps to connect molecular mechanisms to environmentally and industrially relevant ecological behavior such as aggregate formation.

The observation that filaments move on tracks is interesting and potentially ecologically significant.

The observation of rotating membrane-bound protein complexes and tubular arrangement of slime around the filament provides important clues to the mechanism of motion.

The observation that long filaments buckle has the potential to shed light on the nature of mechanical forces in the filaments, e.g. through the study of the length dependence of buckling.

Weaknesses:

The manuscript makes the interesting statement that the distribution of speed vs filament length is uniform, which would constrain the possibilities for mechanical coupling between the filaments. However, Figure 1C does not show a uniform distribution but rather an apparent lack of correlation between speed and filament length, while Figure S3 shows a dependence that is clearly increasing with filament length. Also, although it is claimed that the computational model reproduces the key features of the experiments, no data is shown for the dependence of speed on filament length in the computational model. The statement that is made about the model "all or most cells contribute to propulsive force generation, as seen from a uniform distribution of mean speed across different filament lengths", seems to be contradictory, since if each cell contributes to the force one might expect that speed would increase with filament length.

The computational model misses perhaps the most interesting aspect of the experimental results which is the coupling between rotation, slime generation, and motion. While the dependence of synchronization and reversal efficiency on internal model parameters are explored (Figure 2D), these model parameters cannot be connected with biological reality. The model predictions seem somewhat simplistic: that less coupling leads to more erratic reversal and that the number of reversals matches the expected number (which appears to be simply consistent with a filament moving backwards and forwards on a track at constant speed).

Filament buckling is not analysed in quantitative detail, which seems to be a missed opportunity to connect with the computational model, eg by predicting the length dependence of buckling.

Reviewer #2 (Public review):

Summary:

The authors combined time-lapse microscopy with biophysical modeling to study the mechanisms and timescales of gliding and reversals in filamentous cyanobacterium Fluctiforma draycotensis. They observed the highly coordinated behavior of protein complexes moving in a helical fashion on cells' surfaces and along individual filaments as well as their de-coordination, which induces buckling in long filaments.

Strengths:

The authors provided concrete experimental evidence of cellular coordination and de-coordination of motility between cells along individual filaments. The evidence is comprised of individual trajectories of filaments that glide and reverse on surfaces as well as the helical trajectories of membrane-bound protein complexes that move on individual filaments and are implicated in generating propulsive forces.

Limitations:

The biophysical model is one-dimensional and thus does not capture the buckling observed in long filaments. I expect that the buckling contains useful information since it reflects the competition between bending rigidity, the speed at which cell synchronization occurs, and the strength of the propulsion forces.

Future directions:

The study highlights the need to identify molecular and mechanical signaling pathways of cellular coordination. In analogy to the many works on the mechanisms and functions of multi-ciliary coordination, elucidating coordination in cyanobacteria may reveal a variety of dynamic strategies in different filamentous cyanobacteria.

Reviewer #3 (Public review):

Summary:

The authors present new observations related to the gliding motility of the multicellular filamentous cyanobacteria Fluctiforma draycotensis. The bacteria move forward by rotating their about their long axis, which causes points on the cell surface to move along helical paths. As filaments glide forward they form visible tracks. Filaments preferentially move within the tracks. The authors devise a simple model in which each cell in a filament exerts a force that either pushes forward or backwards. Mechanical interactions between cells cause neighboring cells to align the forces they exert. The model qualitatively reproduces the tendency of filaments to move in a concerted direction and reverse at the end of tracks.

Strengths:

The observations of the helical motion of the filament are compelling.

The biophysical model used to describe cell-cell coordination of locomotion is clear and reasonable. The qualitative consistency between theory and observation suggests that this model captures some essential qualities of the true system.

The authors suggest that molecular studies should be directly coupled to the analysis and modeling of motion. I agree.

Weaknesses:

There is very little quantitative comparison between theory and experiment. It seems plausible that mechanisms other than mechano-sensing could lead to equations similar to those in the proposed model. As there is no comparison of model parameters to measurements or similar experiments, it is not certain that the mechanisms proposed here are an accurate description of reality. Rather the model appears to be a promising hypothesis.

Author response:

Public Reviews:

Reviewer #1 (Public review):

Summary:

The authors use microscopy experiments to track the gliding motion of filaments of the cyanobacteria Fluctiforma draycotensis. They find that filament motion consists of back-and-forth trajectories along a "track", interspersed with reversals of movement direction, with no clear dependence between filament speed and length. It is also observed that longer filaments can buckle and form plectonemes. A computational model is used to rationalize these findings.

We thank the reviewer for this accurate summary of the presented work.

Strengths:

Much work in this field focuses on molecular mechanisms of motility; by tracking filament dynamics this work helps to connect molecular mechanisms to environmentally and industrially relevant ecological behavior such as aggregate formation.

The observation that filaments move on tracks is interesting and potentially ecologically significant.

The observation of rotating membrane-bound protein complexes and tubular arrangement of slime around the filament provides important clues to the mechanism of motion.

The observation that long filaments buckle has the potential to shed light on the nature of mechanical forces in the filaments, e.g. through the study of the length dependence of buckling.

We thank the reviewer for listing these positive aspects of the presented work.

Weaknesses:

The manuscript makes the interesting statement that the distribution of speed vs filament length is uniform, which would constrain the possibilities for mechanical coupling between the filaments. However, Figure 1C does not show a uniform distribution but rather an apparent lack of correlation between speed and filament length, while Figure S3 shows a dependence that is clearly increasing with filament length. Also, although it is claimed that the computational model reproduces the key features of the experiments, no data is shown for the dependence of speed on filament length in the computational model. The statement that is made about the model "all or most cells contribute to propulsive force generation, as seen from a uniform distribution of mean speed across different filament lengths", seems to be contradictory, since if each cell contributes to the force one might expect that speed would increase with filament length.

We agree that the data shows in general a lack of correlation, rather than strictly being uniform. In the revised manuscript, we intend to collect more data from observations on glass to better understand the relation between filament length and speed.

In considering longer filaments, one also needs to consider the increased drag created by each additional cell - in other words, overall friction will either increase or be constant as filament length increases. Therefore, if only one cell (or few cells) are generating motility forces, then adding more cells in longer filaments would decrease speed.

Since the current data does not show any decrease in speed with increasing filament length, we stand by the argument that the data supports that all (or most) cells in a filament are involved in force generation for motility. We would revise the manuscript to make this point - and our arguments about assuming multiple / most cells in a filament contributing to motility - clear.

The computational model misses perhaps the most interesting aspect of the experimental results which is the coupling between rotation, slime generation, and motion. While the dependence of synchronization and reversal efficiency on internal model parameters are explored (Figure 2D), these model parameters cannot be connected with biological reality. The model predictions seem somewhat simplistic: that less coupling leads to more erratic reversal and that the number of reversals matches the expected number (which appears to be simply consistent with a filament moving backwards and forwards on a track at constant speed).

We agree that the coupling between rotation, slime generation and motion is interesting and important when studying the specific mechanism leading to filament motion. However, we believe it even more fundamental to consider the intercellular coordination that is needed to realise this motion. Individual filaments are a collection of independent cells. This raises the question of how they can coordinate their thrust generation in such a way that the whole filament can both move and reverse direction of motion as a single unit. With the presented model, we want to start addressing precisely this point.

The model allows us to qualitatively understand the relation between coupling strength and reversals (erratic vs. coordinated motion of the filament). It also provides a hint about the possibility of de-coordination, which we then look for and identify in longer filaments.

While the model results seem obvious in hindsight, the analysis of the model allows phrasing the question of cell-to-cell coordination, which has not been brought up previously when considering the inherently multi-cell process of filament motility.

Filament buckling is not analysed in quantitative detail, which seems to be a missed opportunity to connect with the computational model, eg by predicting the length dependence of buckling.

Please note that Figure S10 provides an analysis of filament length and number of buckling instances observed. This suggests that buckling happens only in filaments above a certain length.

We do agree that further analyses of buckling - both experimentally and through modelling would be interesting. This study, however, focussed on cell-to-cell coupling / coordination during filament motility. We have identified the possibility of de-coordination through the use of a simple 1D model of motion, and found evidence of such de-coordination in experiments. Notice that the buckling we report does not depend on the filament hitting an external object. It is a direct result of a filament activity which, in this context, serves as evidence of cellular de-coordination.

Now that we have observed buckling and plectoneme formation, these processes need to be analysed with additional experiments and modelling. The appropriate model for this process needs to be 3D, and should ideally include torques arising from filament rotation. Experimentally, we need to identify means of influencing filament length and motion and see if we can measure buckling frequency and position across different filament lengths. These works are ongoing and will have to be summarised in a separate, future publication.

Reviewer #2 (Public review):

Summary:

The authors combined time-lapse microscopy with biophysical modeling to study the mechanisms and timescales of gliding and reversals in filamentous cyanobacterium Fluctiforma draycotensis. They observed the highly coordinated behavior of protein complexes moving in a helical fashion on cells' surfaces and along individual filaments as well as their de-coordination, which induces buckling in long filaments.

We thank the reviewer for this accurate summary of the presented work.

Strengths:

The authors provided concrete experimental evidence of cellular coordination and de-coordination of motility between cells along individual filaments. The evidence is comprised of individual trajectories of filaments that glide and reverse on surfaces as well as the helical trajectories of membrane-bound protein complexes that move on individual filaments and are implicated in generating propulsive forces.

We thank the reviewer for listing these positive aspects of the presented work.

Limitations:

The biophysical model is one-dimensional and thus does not capture the buckling observed in long filaments. I expect that the buckling contains useful information since it reflects the competition between bending rigidity, the speed at which cell synchronization occurs, and the strength of the propulsion forces.

Cell-to-cell coordination is a more fundamental phenomenon than the buckling and twisting of longer filaments, in that the latter is a consequence of limits of the former. In this sense, we are focussing here on something that we think is the necessary first step to understand filament gliding. The 3D motion of filaments (bending, plectoneme formation) is fascinating and can have important consequences for collective behaviour and macroscopic structure formation. As a consequence of cellular coupling, however, it is beyond the scope of the present paper.

Please also see our response above. We believe that the detailed analysis of buckling and plectoneme formation requires (and merits) dedicated experiments and modelling which go beyond the focus of the current study (on cellular coordination) and will constitute a separate analysis that stands on its own. We are currently working in that direction.

Future directions:

The study highlights the need to identify molecular and mechanical signaling pathways of cellular coordination. In analogy to the many works on the mechanisms and functions of multi-ciliary coordination, elucidating coordination in cyanobacteria may reveal a variety of dynamic strategies in different filamentous cyanobacteria.

We thank the reviewer for highlighting this point again and seeing the value in combining molecular and dynamical approaches.

Reviewer #3 (Public review):

Summary:

The authors present new observations related to the gliding motility of the multicellular filamentous cyanobacteria Fluctiforma draycotensis. The bacteria move forward by rotating their about their long axis, which causes points on the cell surface to move along helical paths. As filaments glide forward they form visible tracks. Filaments preferentially move within the tracks. The authors devise a simple model in which each cell in a filament exerts a force that either pushes forward or backwards. Mechanical interactions between cells cause neighboring cells to align the forces they exert. The model qualitatively reproduces the tendency of filaments to move in a concerted direction and reverse at the end of tracks.

We thank the reviewer for this accurate summary of the presented work.

Strengths:

The observations of the helical motion of the filament are compelling.

The biophysical model used to describe cell-cell coordination of locomotion is clear and reasonable. The qualitative consistency between theory and observation suggests that this model captures some essential qualities of the true system.

The authors suggest that molecular studies should be directly coupled to the analysis and modeling of motion. I agree.

We thank the reviewer for listing these positive aspects of the presented work and highlighting the need for combining molecular and biophysical approaches.

Weaknesses:

There is very little quantitative comparison between theory and experiment. It seems plausible that mechanisms other than mechano-sensing could lead to equations similar to those in the proposed model. As there is no comparison of model parameters to measurements or similar experiments, it is not certain that the mechanisms proposed here are an accurate description of reality. Rather the model appears to be a promising hypothesis.

We agree with the referee that the model we put forward is one of several possible. We note, however, that the assumption of mechanosensing by each cell - as done in this model - results in capturing both the alignment of cells within a filament (with some flexibility) and reversal dynamics. We have explored an even more minimal 1D model, where the cell’s direction of force generation is treated as an Ising-like spin and coupled between nearest neighbours (without assuming any specific physico-chemical basis). We found that this model was not fully able to capture both phenomena. In that model, we found that alignment required high levels of coupling (which is hard to justify except for mechanical coupling) and reversals were not readily explainable (and required additional assumptions). These points led us to the current, mechanically motivated model.

The parameterisation of the current model would require measuring cellular forces. To this end, a recent study has attempted to measure some of the physical parameters in a different filamentous cyanobacteria [1] and in our revision we will re-evaluate model parameters and dynamics in light of that study. We will also attempt to directly verify the presence of mechano-sensing by obstructing the movement of filaments.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation