Malnutrition drives infection susceptibility and dysregulated myelopoiesis that persists after refeeding intervention

  1. Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, USA
  2. Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
  3. Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
  4. Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Craig Wilen
    Yale School of Medicine, New Haven, United States of America
  • Senior Editor
    Carla Rothlin
    Yale University, New Haven, United States of America

Reviewer #1 (Public review):

Summary:

In this study, the authors used a chronic murine dietary restriction model to study the effects of chronic malnutrition on controls of bacterial infection and overall immunity, including cellularity and functions of different immune cell types. They further attempted to determine whether refeeding can revert the infection susceptibility and immunodeficiency. Although refeeding here improves anthropometric deficits, the authors of this study show that this is insufficient to recover the impairments across the immune cell compartments.

Strengths:

The manuscript is well-written and conceived around a valid scientific question. The data supports the idea that malnutrition contributes to infection susceptibility and causes some immunological changes. The malnourished mouse model also displayed growth and development delays. The work's significance is well justified. Immunological studies in the malnourished cohort (human and mice) are scarce, so this could add valuable information.

Weaknesses:

The assays on myeloid cells are limited, and the study is descriptive and overstated. The authors claim that "this work identifies a novel cellular link between prior nutritional state and immunocompetency, highlighting dysregulated myelopoiesis as a major." However, after reviewing the entire manuscript, I found no cellular mechanism defining the link between nutritional state and immunocompetency.

Reviewer #2 (Public review):

Summary:

Sukhina et al. use a chronic murine dietary restriction model to investigate the cellular mechanisms underlying nutritionally acquired immunodeficiency as well as the consequences of a refeeding intervention. The authors report a substantial impact of undernutrition on the myeloid compartment, which is not rescued by refeeding despite rescue of other phenotypes including lymphocyte levels, and which is associated with maintained partial susceptibility to bacterial infection.

Strengths:

Overall, this is a nicely executed study with appropriate numbers of mice, robust phenotypes, and interesting conclusions, and the text is very well-written. The authors' conclusions are generally well-supported by their data.

Weaknesses:

There is little evaluation of known critical drivers of myelopoiesis (e.g. PMID 20535209, 26072330, 29218601) over the course of the 40% diet, which would be of interest with regard to comparing this chronic model to other more short-term models of undernutrition.

Further, the microbiota, which is well-established to be regulated by undernutrition (e.g. PMID 22674549, 27339978, etc.), and also well-established to be a critical regulator of hematopoiesis/myelopoiesis (e.g. PMID 27879260, 27799160, etc.), is completely ignored here.

Reviewer #3 (Public review):

Summary:

Sukhina et al are trying to understand the impacts of malnutrition on immunity. They model malnutrition with a diet switch from ad libitum to 40% caloric restriction (CR) in post-weaned mice. They test impacts on immune function with listeriosis. They then test whether re-feeding corrects these defects and find aspects of emergency myelopoiesis that remain defective after a precedent period of 40% CR. Overall, this is a very interesting observational study on the impacts of sudden prolonged exposure to less caloric intake.

Strengths:

The study is rigorously done. The observation of lasting defects after a bout of 40% CR is quite interesting. Overall, I think the topic and findings are of interest.

Weaknesses:

While the observations are interesting, in this reviewer's opinion, there is both a lack of mechanistic understanding of the phenomena and also some lack of resolution/detail about the phenomena itself. Addressing the following major issues would be helpful towards aspects of both:

(1) Is it calories, per se, or macro/micronutrients that drive these phenotypes observed with 40% CR. At the least, I would want to see isocaloric diets (primarily protein, fat, or carbs) and then some of the same readouts after 40% CR. Ie does low energy with relatively more eg protein prevent immunosuppression (as is commonly suggested)? Micronutrients would be harder to test experimentally and may be out of the scope of this study. However, it is worth noting that many of the malnutrition-associated diseases are micronutrient deficiencies.

(2) Is immunosuppression a function of a certain weight loss threshold? Or something else? Some idea of either the tempo of immunosuppression (happens at 1, in which weight loss is detected; vs 2-3, when body length and condition appear to diverge; or 5 weeks), or grade of CR (40% vs 60% vs 80%) would be helpful since the mechanism of immunosuppression overall is unclear (but nailing it may be beyond the scope of this communication).

(3) Does an obese mouse that gets 40% CR also become immunodeficient? As it stands, this ad libitum --> 40% CR model perhaps best models problems in the industrial world (as opposed to always being 40% CR from weaning, as might be more common in the developing world), and so modeling an obese person losing a lot of weight from CR (like would be achieved with GLP-1 drugs now) would be valuable to understanding generalizability.

(4) Generalizing this phenomenon as "bacterial" with listeriosis, which is more like a virus in many ways (intracellular phase, requires type I IFN, etc.) and cannot be given by the natural route of infection in mice, may not be most accurate. I would want to see an experiment with E.Coli, or some other bacteria, to test the statement of generalizability (ie is it bacteria, or type I IFN-pathway dominant infections, like viruses). If this is unique listeriosis, it doesn't undermine the story as it is at all, but it would just require some word-smithing.

(5) Previous reports (which the authors cite) implicate Leptin, the levels of which scale with fat mass, as "permissive" of a larger immune compartment (immune compartment as "luxury function" idea). Is their phenotype also leptin-mediated (ie leptin AAV)?

(6) The inability of re-feeding to "rescue" the myeloid compartment is really interesting. Can the authors do a bone marrow transplantation (CR-->ad libitum) to test if this effect is intrinsic to the CR-experienced bone marrow?

(7) Is the defect in emergency myelopoiesis a defect in G-CSF? Ie if the authors injected G-CSF in CR animals, do they equivalently mobilize neutrophils? Does G-CSF supplementation (as one does in humans) rescue host defense against Listeria in the CR or re-feeding paradigms?

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation