Sound-facilitated inner ear drug delivery.

Kainic acid was applied to the round window of young gerbils under different acoustic conditions— in silence or with 60-75 dB SPL sounds. (A) Tuning curves at 30 dB SPL. The CFs of the three probing channels are 9.0, 3.8 and 1.8 kHz. (B) Normalized neural responses in the AVCN versus the time of drug application. The drug effect time, tE, was defined at the 75 percentiles of normalized curves. In this measurement, it took 54 minutes to affect the 3.8 kHz CF location (green dashed line and arrow). (C) DPOAEs were measured before and after the kainic acid delivery. Two stimulating tones were at 40 dB SPL, and the frequency ratio was 1.1. The x-axis is the f1 frequency. (A-C) Example of drug delivered in silence (“Silence” case). (D, E, F) Example of drug delivery during the presentation of broadband noise at 75 dB SPL (“Sound” case). (G) Response curves with colors representing CFs. Basal (higher frequency) responses decay earlier. Out of 82 measurements, 48 silence-case curves are from 18 animals and 34 sound-case curves are from 13 animals. (H) Mean responses of sound and silence cases at similar locations (CF = 4.5-6.5 kHz); n=19 for Silence, and n=13 for Sound. (I) Effect time versus CF location. The shaded frequency range corresponds to the data in panel H. The broken curve (“Trend” line) was obtained by fitting a curve to the silence data using 1D diffusion theory. (J) Effect time in dB with respect to the trend line. tE in dB = 20log10(tE/tTrend). (K) Two-tailed t-tests between the effect times of sound and silence cases for the entire CF range (whole, n=48, 34 for silence and sound), low-CF locations (<4.5 kHz, n=24, 16 for silence and sound), and high-CF locations (> 4.5 kHz, n=24, 18 for silence and sound). Throughout this paper, the symbols and range bars indicate the mean and the 95% confidence interval, respectively. When an individual data set was presented as an example, the subject identifies are indicated as G###, where ### is a three-digit number.

Suppressing motility of outer hair cells by salicylate.

(A) Under the “post-SA” protocol, salicylic acid (SA, 200 mg/kg) was administered IP before applying kainic acid at the round window. Broadband noise at 75 dB SPL was played during experiments. (B) DPOAEs before and after salicylic acid and kainic acid delivery. (C) Overall response curves. IP salicylic acid was administered at t=0. The red vertical line indicates when kainic acid was applied to the round window. The arrows indicate the application spans of salicylic acid (SA) and kainic acid (KA). (D) Normalized neural responses after kainic-acid application (the curves after the red line in panel B). (E, F, G) Another example of the post-SA protocol. (H) Effect time versus CF location of post-SA measurements (n=22 from 8 animals). The silence-case trend line is the same as Fig. 1. (I) The effect time in dB with respect to the trend line. (J) Two-tailed t-tests between the effect times of sound, silence, and post-SA cases for the entire CF range (whole), low-CF locations (<4.5 kHz, n = 12 for the post-SA case), and high-CF locations (> 4.5 kHz, n=10 for the post-SA case).

Pure tones yield shorter effect times than broadband noise.

(A) Drug delivery during presentation of a tone at low-frequency (0.5 kHz 80 dB SPL) or (B) mid-frequency (3.5 kHz 80 dB SPL). (C) Effect time of drug delivery under the low- and mid-frequency tones. The trendline of the silence case is the same as Fig. 1I. n = 18 from 6 animals for LF tone. n = 22 from 8 animals for MF tone. (D) Normalized effect time. (E) Statistical comparison between the three cases (silence, low- and mid-frequency-tone protocols). The two-tailed t-tests were performed on all CF locations, low-CF (< 4.5 kHz, n = 12, 9 for MF- and LF-tone) and high-CF (> 4.5 kHz, n = 10, 8 for MF- and LF-tone) locations. (F) Normalized effect time under three sound-conditions compared: Broadband noise, mid-frequency-tone and low-frequency-tone.

Outer-hair-cell motility facilitates innerear drug delivery.

Summary of the effects of different acoustic and physiological conditions on inner-ear drug delivery. The y-axes represent absolute effect time in minutes (top) and relative effect time in dB w.r.t the trend line (bottom). The same trend line (broken lines, obtained from the control case) is presented for all panels. (A, B) Effect time in silence. (C, D) Effect time under 60 or 75 dB SPL broadband (0.1-12 kHz) sounds. (E, F) Effect time when outer-hair-cell motility was suppressed by salicylate. Before kainic acid application, the salicylic acid solution was administered systemically (intraperitoneally-IP, 200 mg/kg) or locally (round window-RW, 10 mM). (G, H) Effect time under 80 dB SPL pure tones. A 0.5 kHz (low-frequency-LF) or 3-6 kHz (mid-frequency-MF) tone was presented during drug delivery. The mid-frequency tone was chosen to match one of the probe frequencies.

Active outer hair cells drive fluid flow.

Innerear drug delivery was simulated using a computational model. (A) Drug delivery due to diffusion. The concentration profile over the cochlear length at 30 minutes after drug application to the round window. (B) Drug delivery with 80 dB SPL, 1-kHz sound. The black contour line demonstrates how advection affects drug delivery. (C) Steady-state drift flow of the cochlear fluids. Red and blue curves represent the clockwise and counterclockwise streamlines. (D) The region with the fastest advection. The drift velocity (green color contour) is as large as a few mm/s.