Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorCatherine CarrUniversity of Maryland, College Park, United States of America
- Senior EditorBarbara Shinn-CunninghamCarnegie Mellon University, Pittsburgh, United States of America
Reviewer #1 (Public review):
Summary:
The authors test the "OHC-fluid-pump" hypothesis by assaying the rates of kainic acid dispersal both in quiet and in cochleae stimulated by sounds of different levels and spectral content. The main result is that sound (and thus, presumably, OHC contractions and expansions) result in faster transport along the duct. OHC involvement is corroborated using salicylate, which yielded results similar to silence. Especially interesting is the fact that some stimuli (e.g., tones) seem to provide better/faster pumping than others (e.g., noise), ostensibly due to the phase profile of the resulting cochlear traveling-wave response.
Strengths:
The experiments appear well controlled and the results are novel and interesting. Some elegant cochlear modeling that includes coupling between the organ of Corti and the surrounding fluid as well as advective flow supports the proposed mechanism.
The current limitations and future directions of the study, including possible experimental tests, extensions of the modeling work, and practical applications to drug delivery, are thoughtfully discussed.
Reviewer #2 (Public review):
Although recent cochlear micromechanical measurements in living animals have shown that outer hair cells drive broadband vibration of the reticular lamina, the role of this vibration in cochlear fluid circulation remains unclear. The authors hypothesized that motile outer hair cells facilitate cochlear fluid circulation. To test this, they investigated the effects of acoustic stimuli and salicylate on kainic acid-induced changes in the cochlear nucleus activities. The results reveal that low-frequency tones accelerate the effect of kainic acid, while salicylate reduces the impact of acoustic stimuli, indicating that outer hair cells actively drive cochlear fluid circulation.
The major strengths of this study lie in its high significance and the synergistic use of both electrophysiological recording and computational modeling. Recent in vivo observations of the broadband reticular lamina vibration challenge the traditional view of frequency-specific cochlear amplification. Furthermore, there is currently no effective noninvasive method to deliver the drugs or genes to the cochlea. This study addresses these important questions by observing outer hair cells' roles in the cochlear transport of kainic acid. The author utilized a well-established electrophysiological method to produce valuable new data and a custom-developed computational model to enhanced the interpretation of their experimental results.
The authors successfully validated their hypothesis, showing through the experimental and modeling results that active outer hair cells enhance cochlear fluid circulation in the living cochlea.
These findings have significant implications for advancing our understanding of cochlear amplification and offer promising clinical applications for treating hearing loss by accelerating cochlear drug delivery.
Reviewer #3 (Public review):
Summary:
This study reveals that sound exposure enhances drug delivery to the cochlea through the non-selective action of outer hair cells. The efficiency of sound-facilitated drug delivery is reduced when outer hair cell motility is inhibited. Additionally, low-frequency tones were found to be more effective than broadband noise for targeting substances to the cochlear apex. Computational model simulations support these findings.
Strengths:
The study provides compelling evidence that the broad action of outer hair cells is crucial for cochlear fluid circulation, offering a novel perspective on their function beyond frequency-selective amplification. Furthermore, these results could offer potential strategies for targeting and optimizing drug delivery throughout the cochlear spiral.
Weaknesses:
The primary weakness of this paper lies in the surgical procedure used for drug administration through the round window. Opening the cochlea can alter intracochlear pressure and disrupt the traveling wave from sound, a key factor influencing outer hair cell activity. However, the authors do not provide sufficient details on how they managed this issue during surgery. Additionally, the introduction section needs further development to better explain the background and emphasize the significance of the work.