Decapping activators Edc3 and Scd6 act redundantly with Dhh1 in post-transcriptional repression of starvation-induced pathways

  1. Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
  2. Institute for Stem Cell Science and Regenerative Medicine (DBT-inStem) GKVK Bangalore, India
  3. Department of Biological Sciences, Wayne State University, Detroit, United States

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Ivan Topisirovic
    Jewish General Hospital, Montreal, Canada
  • Senior Editor
    Silke Hauf
    Virginia Tech, Blacksburg, United States of America

Reviewer #1 (Public review):

Summary:

mRNA decapping and decay factors play critical roles in post-transcriptionally regulating gene expression. Here, Kumar and colleagues investigate how deleting two yeast decapping enhancer proteins (Edc3 and Scd6), either alone or in tandem, influences the transcriptome. Using RNA-Seq and ribosome profiling, they come to the conclusion that these factors generally act in a redundant fashion, with a mutant lacking both proteins showing an increased abundance of select mRNAs. As these upregulated transcripts are also upregulated in mutants lacking the decapping enzyme, Dcp2, and show no increases in transcription of their cognate genes, they come to the conclusion that this is at the level of mRNA decapping and decay. Their ribosome profiling data also led them to conclude that Scd6 and Edc3 display functional redundancy and cooperativity with Dhh1/Pat1 in repressing the translation of specific transcripts. Finally, as their data suggest that Scd6 and Edc3 repress mRNAs coding for proteins involved in cellular respiration, as well as proteins involved in the catabolism of alternative carbon sources, they go on to show that these decapping activators play a role in repressing oxidative phosphorylation.

Strengths:

Overall, this manuscript is well-written and contains a large amount of high-quality data and analyses. At its core, it helps to shed light on the overlapping roles of Edc3 and Scd6 in sculpting the yeast transcriptome.

Weaknesses:

(1) While the data presented makes conclusions about mRNA stability based on corresponding ChIP-Seq analyses and analyzing other mutants (e.g. Dcp2 knockout), at no point is mRNA stability actually ever directly assessed. This direct assessment, even for select transcripts, would further strengthen their conclusions.

(2) Scd6 and Edc3 show a high level of functional redundancy, as demonstrated by the double mutant. As these proteins form complexes with other decapping factors/activators, I'm curious if depleting both proteins in the double mutant destabilizes any of these other factors. Have the authors ever assessed the levels of other key decapping factors in the double mutants (i.e. Dhh1, Pat1, Dcp2...etc)? I wonder if depleting both proteins leads to a general destabilization of key complexes. It would also be interesting to see if depleting Edc3 or Scd6 leads to a concomitant increase in the other protein as a compensatory mechanism.

(3) While not essential, it would be interesting if the authors carried out add-back experiments to determine which domain within Scd6/Edce3 plays a critical role in enforcing the regulation that they see. Their double mutant now puts them in a perfect position to carry out such experiments.

Reviewer #2 (Public review):

Summary:

This manuscript by Kumar and Zhang presents compelling evidence that Edc3 and Scd6 decapping activators present a high degree of redundancy that can only be overcome by a double mutant. In addition, the authors provide strong evidence of these complexes in regulating starvation-induced pathways as evidenced by measurements of mitochondrial membrane potential, metabolomics, and analysis of the flux of Krebs cycle intermediates.

Strengths:

Kumar and Zhang et al provide multiple sources of evidence of the direct mechanism of Edc3 and Scd6 function, by using and comparing different approaches such as mRNA-seq, ribosome occupancies, and translational efficiencies. By extensive analysis, the authors show that this complex can also regulate genes outside the Environmental Stress Response (non-iESR), which are significantly up-regulated in all three mutants. Remarkably, the gene ontology analysis of these non-iESR genes identifies enrichment for mitochondrial proteins that are implicated in the Krebs cycle. Overall, this study adds novel mechanistic insight into how nutrients control gene expression by modulating decapping and translational repression.

Weaknesses:

The authors show very nicely in Figure S1A that growth phenotypes from scd6Δedc3∆ can be rescued by transformation of EDC3 (pLfz614-7) or SCD6 (pLfz615-5). The manuscript might benefit from using these rescue strategies in the analysis performed (e.g. RNA-seq, ribosome occupancies, and translational efficiencies). Also, these rescue assays could provide a good platform to further characterise the protein-protein interactions between Edc3, Scd6, and Dhh1.

Reviewer #3 (Public review):

Summary:

In this paper, Kumar et al aimed to investigate the roles of two decapping activators, Edc3 and Scd6, in regulating mRNA decay and translation in yeast. Previous research suggested limited individual roles for these proteins in mRNA decay. The authors hypothesized that Edc3 and Scd6 act redundantly and explored how these proteins interact with two other factors involved in mRNA decapping and translational repression, with Dhh1 and Pat1, particularly in response to nutrient availability. The study aims to identify mRNAs targeted by these proteins for degradation and translation repression and assess their impact on metabolic pathways including mitochondrial function and alternative carbon source utilization.

Strengths:

The paper has several strengths including the comprehensive approach taken by the authors using multiple experimental techniques (RNA-seq, ribosome profiling, Western blotting, TMT-MS, and polysome profiling) to examine both mRNA abundance and translation efficiency, thereby providing multiple lines of evidence to support their conclusions. The authors demonstrate clear redundancy of the factors by using single and double mutants for Edc3 and Scd6 and their global approach enables an understanding of these factors' roles across the yeast transcriptome. The work connects post-transcriptional processes to nutrient-dependent gene regulation, providing insights into how cells adapt to changes in their environment. The authors demonstrate the redundant roles of Edc3 and Scd6 in mRNA decapping and translation repression. Their RNA-seq and ribosome profiling results convincingly show that many mRNAs are derepressed only in the double mutants, confirming their hypothesis of redundancy. Furthermore, the functional cooperation between Edc3/Scd6 and Dhh1/Pat1 in regulating specific metabolic pathways, like mitochondrial function and carbon source utilization, is supported by the data. The results therefore support the authors' conclusions that these decapping factors work together to fine-tune gene expression in response to nutrient availability.

Weaknesses:

The limitations of the study include the use of indirect evidence to support claims that Edc3 and Scd6 recruit Dhh1 to the Dcp2 complex, which is inferred from correlations in mRNA abundance and ribosome profiling data rather than direct biochemical evidence. Also, there is limited exploration of other signals as the study is focused on glucose availability, and it is unclear whether the findings would apply broadly across different environmental stresses or metabolic pathways.

Nonetheless, the study provides new insights into how mRNA decapping and degradation are tightly linked to metabolic regulation and nutrient responses in yeast. The RNA-seq and ribosome profiling datasets are valuable resources for the scientific community, providing quantitative information on the role of decapping activators in mRNA stability and translation control.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation