Screening the MMV Pathogen Box reveals the mitochondrial bc1-complex as a drug target in mature Toxoplasma gondii bradyzoites

  1. Metabolism of Microbial Pathogens, Robert Koch Institute, Berlin, Germany
  2. Advanced Light and Electron Microscopy, Centre for Biological Threats and Special Pathogens 4, Robert Koch-Institute, Berlin, Germany
  3. Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Bavesh Kana
    University of the Witwatersrand, Johannesburg, South Africa
  • Senior Editor
    Bavesh Kana
    University of the Witwatersrand, Johannesburg, South Africa

Reviewer #1 (Public review):

Summary:

The authors' goal was to advance the understanding of metabolic flux in the bradyzoite cyst form of the parasite T. gondii, since this is a major form of transmission of this ubiquitous parasite, but very little is understood about cyst metabolism and growth.

Nonetheless, this is an important advance in understanding and targeting bradyzoite growth.

Strengths:

The study used a newly developed technique for growing T. gondii cystic parasites in a human muscle-cell myotube format, which enables culturing and analysis of cysts. This enabled the screening of a set of anti-parasitic compounds to identify those that inhibit growth in both vegetative (tachyzoite) forms and bradyzoites (cysts). Three of these compounds were used for comparative Metabolomic profiling to demonstrate differences in metabolism between the two cellular forms.

One of the compounds yielded a pattern consistent with targeting the mitochondrial bc1 complex and suggests a role for this complex in metabolism in the bradyzoite form, an important advance in understanding this life stage.

Weaknesses:

Studies such as these provide important insights into the overall metabolic differences between different life stages, and they also underscore the challenge of interpreting individual patterns caused by metabolic inhibitors due to the systemic level of some of the targets, so that some observed effects are indirect consequences of the inhibitor action. While the authors make a compelling argument for focusing on the role of the bc1 complex, there are some inconsistencies in the patterns that underscore the complexity of metabolic systems.

Reviewer #2 (Public review):

Summary:

A particular challenge in treating infections caused by the parasite Toxoplasma gondii is to target (and ultimately clear) the tissue cysts that persist for the lifetime of an infected individual. The study by Maus and colleagues leverages the development of a powerful in vitro culture system for the cyst-forming bradyzoite stage of Toxoplasma parasites to screen a compound library for candidate inhibitors of parasite proliferation and survival. They identify numerous inhibitors capable of inhibiting both the disease-causing tachyzoite and the cyst-forming bradyzoite stages of the parasite. To characterize the potential targets of some of these inhibitors, they undertake metabolomic analyses. The metabolic signatures from these analyses lead them to identify one compound (MMV1028806) that interferes with aspects of parasite mitochondrial metabolism. The authors claim that MV1028806 targets the bc1 complex of the mitochondrial electron transport chain of the parasite, although the evidence for this is indirect and speculative. Nevertheless, the study presents an exciting approach for identifying and characterizing much-needed inhibitors for targeting tissue cysts in these parasites.

Strengths:

The study presents convincing proof-of-principle evidence that the myotube-based in vitro culture system for T. gondii bradyzoites can be used to screen compound libraries, enabling the identification of compounds that target the proliferation and/or survival of this stage of the parasite. The study also utilizes metabolomic approaches to characterize metabolic 'signatures' that provide clues to the potential targets of candidate inhibitors, although falls short of identifying the actual targets.

Weaknesses:

(1) The authors claim to have identified a compound in their screen (MMV1028806) that targets the bc1 complex of the mitochondrial electron transport chain (ETC). The evidence they present for this claim is indirect (metabolomic signatures and changes in mitochondrial membrane potential) and could be explained by the compound targeting other components of the ETC or affecting mitochondrial biology or metabolism in other ways. In order to make the conclusion that MMV1028806 targets the bc1 complex, the authors should test specifically whether MMV1028806 inhibits bc1-complex activity (i.e. in a direct enzymatic assay for bc1 complex activity). Testing the activity of MMV1028806 against other mitochondrial dehydrogenases (e.g. dihydroorotate dehydrogenase) that feed electrons into the ETC might also provide valuable insights. The experiments the authors perform also do not directly measure whether MMV1028806 impairs ETC activity, and the authors could also test whether this compound inhibits mitochondrial O2 consumption (as would be expected for a bc1 inhibitor).

(2) The authors claim that compounds targeting bradyzoites have greater lipophilicity than other compounds in the library (and imply that these compounds also have greater gastrointestinal absorbability and permeability across the blood-brain barrier). While it is an attractive idea that lipophilicity influences drug targeting against bradyzoites, the effect seems pretty small and is complicated by the fact that the comparison is being made to compounds that are not active against parasites. If the authors are correct in their assertion that lipophilicity is a major determinant of bradyzoicidal compounds compared to compounds that target tachyzoites alone, you would expect that compounds that target tachyzoites alone would have lower lipophilicity than those that target bradyzoites. It would therefore make more sense to (statistically) compare the bradyzoicidal and dual-acting compounds to those that are only active in tachyzoites (visually the differences seem small in Figure S2B). This hypothesis would be better tested through a structure-activity relationship study of select compounds (which is beyond the scope of the study). Overall, the evidence the authors present that high lipophilicity is a determinant of bradyzoite targeting is not very convincing, and the authors should present their conclusions in a more cautious manner.

(3) Page 11 and Figure 7. The authors claim that their data indicate that ATP is produced by the mitochondria of bradyzoites "independently of exogenous glucose and HDQ-target enzymes." The authors cite their previous study (Christiansen et al, 2022) as evidence that HDQ can enter bradyzoites, since HDQ causes a decrease in mitochondrial membrane potential. Membrane potential is linked to the synthesis of ATP via oxidative phosphorylation. If HDQ is really causing a depletion of membrane potential, is it surprising that the authors observe no decrease in ATP levels in these parasites? Testing the importance of HDQ-target enzymes using genetic approaches (e.g. gene knockout approaches) would provide better insights than the ATP measurements presented in the manuscript, although would require considerable extra work that may be beyond the scope of the study. Given that the authors' assay can't distinguish between ATP synthesized in the mitochondrion vs glycolysis, they may wish to interpret their data with greater caution.

Reviewer #3 (Public review):

Summary:

The authors describe an exciting 400-drug screening using a MMV pathogen box to select compounds that effectively affect the medically important Toxoplasma parasite bradyzoite stage. This work utilises a bradyzoites culture technique that was published recently by the same group. They focused on compounds that affected directly the mitochondria electron transport chain (mETC) bc1-complex and compared them with other bc1 inhibitors described in the literature such as atovaquone and HDQs. They further provide metabolomics analysis of inhibited parasites which serves to provide support for the target and to characterise the outcome of the different inhibitors.

Strengths:

This work is important as, until now, there are no effective drugs that clear cysts during T. gondii infection. So, the discovery of new inhibitors that are effective against this parasite stage in culture and thus have the potential to battle chronic infection is needed. The further metabolic characterization provides indirect target validation and highlights different metabolic outcomes for different inhibitors. The latter forms the basis for new studies in the field to understand the mode of inhibition and mechanism of bc1-complex function in detail.

The authors focused on the function of one compound, MMV1028806, that is demonstrated to have a similar metabolic outcome to burvaquone. Furthermore, the authors evaluated the importance of ATP production in tachyzoite and bradyzoites stages and under atovaquone/HDQs drugs.

Weaknesses:

Although the authors did experiments to identify the metabolomic profile of the compounds and suggested bc-1 complex as the main target of MMV1028806, they did not provide experimental validation for that.

Author response:

We thank the reviewers for taking the time to read and critically assess our manuscript.

We agree with the main points and they will be addressed in both writing and in additional experiments in a revised version of the paper.

The shared and major point of criticism are non-conclusive metabolomic data that indicate the bc1-complex in T. gondii as a MMV1028806 target tachyzoites and bradyzoites. Regarding the former, our conclusion was mainly based on both metabolite abundance changes that are observed after treatment with one bona-fide bc1-complex inhibitor atovaquone and also steady-state stable isotope incorporation patterns. While it is true that secondary effects of metabolic inhibition occur and are often dominant, isotope labelling equilibria take more time to establish and may reflect more accurately blocked metabolic reactions i.e. the primary target.

Regardless, we will follow the excellent suggestions to functionally assay particular mitochondrial electron transfer reactions to corroborate or revise our conclusions regarding the primary MMV1028806 target.

For more details please refer the full author responses that will accompany the revised manuscript.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation