A whole-organism landscape of X-inactivation in humans

  1. Crown Princess Victoria Childreńs Hospital, Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Jeannie Lee
    Massachusetts General Hospital, Boston, United States of America
  • Senior Editor
    Murim Choi
    Seoul National University, Seoul, Republic of Korea

Reviewer #1 (Public review):

Summary:

This manuscript investigates genes that escape X-Chromosome Inactivation (XCI) across human tissues, using females that exhibit skewed or non-random XCI. The authors identified 2 female individuals with skewed XCI in the GTex database, in addition to the 1 female skewed sample in this database that has been described in a previous publication (Ref.16). The authors also determined the genes that escape XCI for 380 X-linked genes across 30 different tissues.

Strengths:

The novelty of this manuscript is that the authors have identified the XCI expression status for a total of 380 genes across 30 different human tissues, and also discovered the XCI status (escape, variable escape, or silenced) for 198 X-linked genes, whose status was previously not determined. This report is a good resource for the field of XCI, and would benefit from additional analyses and clarification of their comparisons of XCI status.

Weaknesses:

Specific comments:

(1) The authors state that they have reclassified the allelic expression status of 32 genes (shown in Table S5, Supplementary Figure 3). The concern is the source of the tissue or cell line which was originally used to make the classification of XCI status, and whether the comparisons are equivalent. For example, if cell lines (and not tissues) were used to define the XCI status for EGFL6, TSPAN6, and CXorf38, then how can the authors be sure that the escape status in whole tissues would be the same? Also along these lines, the authors should consider whether escape status in previous studies using immortalized/cancer cell lines (such as the meta analyses done in Balaton publication) would be different compared to healthy tissues (seems like it should be). Therefore making comparisons between healthy whole tissues and cancer cell lines doesn't make sense.

(2) The authors note that skewed XCI is prevalent in the human population, and cite some publications (references 8, 10-12). If RNAseq data is available from these female individuals with skewed XCI (such as ref 12), the authors should consider using their allelic expression pipeline to identify XCI status of more X-linked genes.

(3) It has been well established that the human inactive X has more XCI escape genes compared to the mouse inactive X. In light of the author's observations across human tissues, how does the XCI status compare with the same tissues in mice?

Reviewer #2 (Public review):

Summary:

Gylemo et al. present a manuscript focused on identifying the X-inactivation or X-inactivation escape status for 380 genes across 30 normal human tissues. X-inactivation status of X-linked genes across tissues is important for understanding sex-specific differences in X-linked gene expression and therefore traits, and the likely effect of X-linked pathogenic variants in females. These new data are significant as they double the number of genes that have been classified in the human, and double the number of tissues studied previously.

Strengths:

The strengths of this work are that they analyse 3 individuals from the GTex dataset (2 newly identified, 1 previously identified and published) that have highly/ completely skewed X inactivation, which allows the study of escape from X inactivation in bulk RNA-sequencing. The number of individuals and breadth of tissues analysed add significantly to both the number of genes that have been classified and the weight of evidence for their claims. The additional 198 genes that have been classified and the reclassification of genes that previously had only limited support for their status is useful for the field.

In analysing the data they find that tissue-specific escape from X inactivation appears relatively rare. Rather, if genes escape, even variably, it tends to occur across tissues. Similarly, if a gene is inactivated, it is stable across tissues.

Weaknesses:

In my view there are only minor weaknesses in this work, that tend to come about due to the requirement to study individuals with highly skewed X inactivation. I wonder whether the cause of the highly skewed X inactivation may somehow influence the likelihood of observing tissue-specific escape from X inactivation. In this light, it would be interesting to further understand the genetic cause for the highly skewed X inactivation in each of these three cases in the whole exome sequencing data. Future additional studies may validate these findings using single-cell approaches in unrelated individuals across tissues, where there is normal X inactivation.

Reviewer #3 (Public review):

Summary:

Nestor and colleagues identify genes escaping X chromosome inactivation (XCI) in rare individuals with non-mosaic XCI (nmXCI) whose tissue-specific RNA-seq datasets were obtained from the GTEX database. Because XCI is non-mosaic, read counts representing a second allele are tested for statistically significant escape, in this case > 2.5% of active X expression. Whereas a prior GTEX analysis found only one nmXCI female, this study finds two additional donors in GTEX, therefore expanding the number of assessed X-linked genes to 380. Although this is fewer than half of X-linked genes, the study demonstrates that although rare, nmXCI females are represented in RNA-seq databases such as GTEX. Therefore this analytical approach is worthwhile pursuing in other (larger) databases as well, to provide deeper insight into escape from XCI which is relevant to X-linked diseases and sex differences.

Strengths:

The analysis is well-documented, straightforward, and valuable. The supplementary tables are useful, and the claims in the main text well-supported.

Weaknesses:

There are very few, except that this escape catalogue is limited to 3 donors, based on a single (representative) tissue screen in 285 female donors, mostly using muscle samples. However, if only pituitary samples had been screened, nmXCI-1 would have been missed. Additional donors in the 285 representative samples cross a lower threshold of AE = 0.4. It would be worthwhile to query all tissues of the 285 donors to discover more nmXCI cases, as currently fewer than half of X-linked genes received a call using this very worthwhile approach.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation