Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorZoe McElligottUniversity of North Carolina at Chapel Hill, Chapel Hill, United States of America
- Senior EditorSacha NelsonBrandeis University, Waltham, United States of America
Reviewer #1 (Public review):
Summary:
In this manuscript, the authors investigate the cellular mechanism underlying suppression of adrenergic effects on excitatory transmission onto hypothalamic CRH neurons by stress. Experiments in ex-vivo slices show that this is a long-lasting effect that occurs through endocytosis of receptors. The authors then move into an immortalized hypothalamic cell line to enable investigation of the mechanism of changes in receptor trafficking. They use a series of immunohistochemistry, FRET, and biochemical experiments to show that application of corticosterone increases targeting of alpha1 adrenergic receptors to the late endosome and lysosome rather than the recycling endosome. Perhaps most interesting, they find that alpha1 receptors and glucocortioid receptors form a complex that is ultimately transferred to the nucleus.
Strengths:
Overall, the studies in this manuscript are rigorous and well-conducted. The data supports their conclusions, and they've shown convincingly that glucocorticoid signaling affects trafficking of alpha1 receptors in the culture system they are using. These findings are important for the field of stress research, both in understanding how two components of the stress system (norepinephrine and HPA axis) interact with each other and in neuromodulatory modulation of hypothalamic CRH neurons. Their finding that alpha1 receptors and glucocorticoid receptors form a complex is particularly interesting and maybe impactful outside of the immediate application in the hypothalamus.
Weaknesses:
The study has two primary weaknesses. First, the majority of the experiments were conducted in an immortalized hypothalamic cell line. This was necessary to conduct the type of experiments needed to test the author's hypothesis, but it remains unclear how closely these cells resemble CRH neurons, or how the same mechanism may be preserved or altered in an intact circuit. Further discussion of these points would strengthen the manuscript.
Second, while experiments are generally well-designed, the authors do not show that the effects of corticosterone can be blocked with a glucocorticoid receptor antagonist. This is fairly standard pharmacology and would strengthen confidence in the findings presented in the study.
Reviewer #2 (Public review):
Summary:
In this manuscript, the authors report novel and exciting findings delineating a non-transcriptional mechanism whereby glucocorticoids desensitize CRH neurons to NE in response to somatic stress. The authors find that this desensitization induced by CORT 1. persists more than 18h, 2. reduces surface expression of AR1bR (NE receptors) by redirecting trafficking from rapid recycling to late endosomal pools and lysosomes, 3. is dependent on NE binding to the AR1bR, 4. involves cellular nitrosylation, 5. involves ubiquitination of beta-arrestin, and 5. involves interactions between glucocorticoid receptors and AR1bs, glucocorticoid receptors and ubiquitinated beta-arrestin, and AR1b and ubiquitinated beta-arrestin. While the authors do not directly provide evidence for a trimeric complex composed of these three proteins, their data that CORT causes translocation of these dimeric complexes to the cell nucleus suggests it is likely. Overall, these results are highly informative for understanding novel mechanisms mediating glucocorticoid regulation of GPCRs.
Strengths:
- Good rationale for each experiment, which describes many parts of the CORT-NE desensitization mechanism
- Great discussion of limitations of the approaches and the parts of the mechanism we do not fully understand yet
- Appropriate approaches for questions being answered
- Describes a highly novel CORT mechanism that non-transcriptionally switches GPCR trafficking dynamics, something that could have far reaching implications for other GPCRs involved in stress responses
Weaknesses:
- Unclear how this mechanism would generalize to other stressor modalities. Restraint stress is a somatic stressor, but can also be considered a psychological stressor (model of depression-like behavior). A purely somatic stressor might increase the robustness of this phenomenon.
- Remains unknown how nitrosylation plays into the mechanism in terms of specific proteins affected by CORT (GRK2, endophilin, clathrin possibilities)
Reviewer #3 (Public review):
Summary:
In this manuscript, Weiss et al describe a mechanism through which glucocorticoids desensitize CRH neurons in the PVN to norepinephrine. This follows on from previous work from this lab showing rapid glucocorticoid suppression of adrenergic signaling in CRH neurons specific to somatic stress activation, and modality-selective glucocorticoid negative feedback.
Specifically, their previous work shows that:
(1) NE increases glutamate drive to CRH neurons
(2) CORT blunts the effects of NE through a dynamin-dependent mechanism
(3) This contributes to loss of NE signalling after stress (specifically when the second stressor is a physiological one)
Here they extend this line of interrogation by showing that CORT redistributes Ara1b receptors from rapid recycling endosomes to late endosomes and lysosomes. They show a time window of CORT actions and provide additional mechanistic details implicating nitric oxide-dependent nitrosylation in receptor trafficking.
Strengths:
Builds on existing work to provide additional mechanistic details.
The experiments are well done and data are compelling.
The link to nitrosylation is novel (but see below)
Weaknesses:
(1) The link to nitrosylation is interesting, but a bit confusing. If I understand correctly, inhibiting the production of NO or using NEM increases receptor internalization, suggesting that NO-dependent nitrosylation prevents ligand-dependent internalization. What is unclear to me is how CORT is linked to this step. I note the authors show a decrease in nitrosylation with CORT. So, does CORT decrease the activity of NOS and, thus, the production of NO? If so, then exogenously activating this system in the presence of CORT should result in a recovery of NE-dependent increase in glutamate release. Or is the GCR directly decreasing nitrosylation? Linking these elements is critical in terms of furthering our mechanistic understanding of this process.
(2) It's not clear why/how blockade of Ara1 after CORT-induced cytosolic accumulation results in a reversal of effect. Unless I misunderstood something, this requires further explanation.