Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorDouglas PortmanUniversity of Rochester, Rochester, United States of America
- Senior EditorJoshua GoldUniversity of Pennsylvania, Philadelphia, United States of America
Reviewer #1 (Public review):
Summary:
This work uses a novel, ethologically relevant behavioral task to explore decision-making paradigms in C. elegans foraging behavior. By rigorously quantifying multiple features of animal behavior as they navigate in a patch food environment, the authors provide strong evidence that worms exhibit one of three qualitatively distinct behavioral responses upon encountering a patch:
(1) "search", in which the encountered patch is below the detection threshold;
(2) "sample", in which animals detect a patch encounter and reduce their motor speed, but do not stay to exploit the resource and are therefore considered to have "rejected" it; and
(3) "exploit", in which animals "accept" the patch and exploit the resource for tens of minutes.
Interestingly, the probability of these outcomes varies with the density of the patch as well as the prior experience of the animal. Together, these experiments provide an interesting new framework for understanding the ability of the C. elegans nervous system to use sensory information and internal state to implement behavioral state decisions.
Strengths:
(1) The work uses a novel, neuroethologically-inspired approach to studying foraging behavior.
(2) The studies are carried out with an exceptional level of quantitative rigor and attention to detail.
(3) Powerful quantitative modeling approaches including GLMs are used to study the behavioral states that worms enter upon encountering food, and the parameters that govern the decision about which state to enter.
(4) The work provides strong evidence that C. elegans can make 'accept-reject' decisions upon encountering a food resource.
(5) Accept-reject decisions depend on the quality of the food resource encountered as well as on internally represented features that provide measurements of multiple dimensions of internal state, including feeding status and time.
Weaknesses:
(1) The authors repeatedly assert that an individual's behavior in the foraging assay depends on its prior history (particularly cultivation conditions). While this seems like a reasonable expectation, it is not fully fleshed out. The work would benefit from studies in which animals are raised on more or less abundant food before the behavioral task.
(2) The authors convincingly show that the probability of particular behavioral outcomes occurring upon patch encounter depends on time-associated parameters (time since last patch encounter, time since last patch exploitation). There are two concerns here. First, it is not clear how these values are initialized - i.e., what values are used for the first occurrence of each behavioral state? More importantly, the authors don't seem to consider the simplest time parameter, the time since the start of the assay (or time since worm transfer). Transferring animals to a new environment can be associated with significant mechanical stimulus, and it seems quite possible that transferring animals causes them to enter a state of arousal. This arousal, which certainly could alter sensory function or decision-making, would likely decay with time. It would be interesting to know how well the model performs using time since assay starts as the only time-dependent parameter.
(3) Similarly, Figures 2L and M clearly show that the probability of a search event occurring upon a patch encounter decreases markedly with time. Because search events are interpreted as a failure to detect a patch, this implies that the detection of (dilute) patches becomes more efficient with time. It would be useful for the authors to consider this possibility as well as potential explanations, which might be related to the point above.
(4) Based on their results with mec-4 and osm-6 mutants, the authors assert that chemosensation, rather than mechanosensation, likely accounts for animals' ability to measure patch density. This argument is not well-supported: mec-4 is required only for the function of the six non-ciliated light-touch neurons (AVM, PVM, ALML/R, PLML/R). In contrast, osm-6 is expected to disrupt the function of the ciliated dopaminergic mechanosensory neurons CEP, ADE, and PDE, which have previously been shown to detect the presence of bacteria (Sawin et al 2000). Thus, the paper's results are entirely consistent with an important role of mechanosensation in detecting bacterial abundance. Along these lines, it would be useful for the authors to speculate on why osm-6 mutants are more, rather than less, likely to "accept" when encountering a patch.
(5) While the evidence for the accept-reject framework is strong, it would be useful for the authors to provide a bit more discussion about the null hypothesis and associated expectations. In other words, what would worm behavior in this assay look like if animals were not able to make accept-reject decisions, relying only on exploit-explore decisions that depend on modulation of food-leaving probability?
Reviewer #2 (Public review):
This study provides an experimental and computational framework to behavioral biology that helps examine and understand how C. elegans make decisions while foraging in environments with patches of food. The authors show that worms actively reject or accept food patches depending on a number of internal and external factors.
The key novelty and strength of this paper is the explicit demonstration of behavior analysis and quantitative modeling to elucidate the decision-making process. In particular, the description of the exploring vs. exploiting phases, and sensing vs. non-sensing categories of C. elegans foraging behavior based on the clustering of behavioral states defined in a multi-dimensional behavior-metrics space, and the implementation of a generalized linear model (GLM) whose parameters can provide quantitative biological interpretations.
While the concept is interesting, there are many flaws in the experimental, analysis, and models that weaken what one can conclude from the work.
Reviewer #3 (Public review):
Summary:
In this study by Haley et al, the authors investigated explore-exploit foraging using C. elegans as a model system. Through an elegant set of patchy environment assays, the authors built a GLM based on past experience that predicts whether an animal will decide to stay on a patch to feed and exploit that resource, instead of choosing to leave and explore other patches.
Strengths:
I really enjoyed reading this paper. The experiments are simple and elegant, and address fundamental questions of foraging theory in a well-defined system. The experimental design is thoroughly vetted, and the authors provide a considerable volume of data to prove their points. My only criticisms have to do with the data interpretation, which I think is easily addressable.
Weaknesses:
(1) Sensing vs. non-sensing
The authors claim that when animals encounter dilute food patches, they do not sense them, as evidenced by the shallow deceleration that occurs when animals encounter these patches. This seems ethologically inaccurate. There is a critical difference between not sensing a stimulus, and not reacting to it. Animals sense numerous stimuli from their environment, but often only behaviorally respond to a fraction of them, depending on their attention and arousal state. With regard to C. elegans, it is well-established that their amphid chemosensory neurons are capable of detecting very dilute concentrations of odors. In addition, the authors provide evidence that osm-6 animals have altered exploit behaviors, further supporting the importance of amphid chemosensory neurons in this behavior.
(2) Search vs. sample & sensing vs. non-sensing
In Figures 2H and 2I, the authors claim that there are three behavioral states based on quantifying average velocity, encounter duration, and acceleration, but I only see three. Based on density distributions alone, there really only seem to be 2 distributions, not 3. The authors claim there are three, but to come to this conclusion, they used a QDA, which inherently is based on the authors training the model to detect three states based on prior annotations. Did the authors perform a model test, such as the Bayesian Information Criterion, to confirm whether 2 vs. 3 Gaussians is statistically significant? It seems like the authors are trying to impose two states on a phenomenon with a broad distribution. This seems very similar to the results observed for roaming vs. dwelling experiments, which again, are essentially two behavioral states.
(4) History-dependence of the GLM
The logistic GLM seems like a logical way to model a binary choice, and I think the parameters you chose are certainly important. However, the framing of them seems odd to me. I do not doubt the animals are assessing the current state of the patch with an assessment of past experience; that makes perfect logical sense. However, it seems odd to reduce past experience to the categories of recently exploited patch, recently encountered patch, and time since last exploitation. This implies the animals have some way of discriminating these past patch experiences and committing them to memory. Also, it seems logical that the time on these patches, not just their density, should also matter, just as the time without food matters. Time is inherent to memory. This model also imposes a prior categorization in trying to distinguish between sensed vs. not-sensed patches, which I criticized earlier. Only "sensed" patches are used in the model, but it is questionable whether worms genuinely do not "sense" these patches.
(5) osm-6
The osm-6 results are interesting. This seems to indicate that the worms are still sensing the food, but are unable to assess quality, therefore the default response is to exploit. How do you think the worms are sensing the food? Clearly, they sense it, but without the amphid sensory neurons, and not mechanosensation. Perhaps feeding is important? Could you speculate on this?
(7) Impact:
I think this work will have a solid impact on the field, as it provides tangible variables to test how animals assess their environment and decide to exploit resources. I think the strength of this research could be strengthened by a reassessment of their model that would both simplify it and provide testable timescales of satiety/starvation memory.