Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorBabak MomeniBoston College, Chestnut Hill, United States of America
- Senior EditorFelix CampeloInstitute of Photonic Sciences, Barcelona, Spain
Reviewer #1 (Public review):
This work has significant relevance to the field, both practically and naturally. Combatting or preventing toxic cyanobacterial blooms is an active area of environmental research that offers a practical backbone for this manuscript's ideas. Additionally, the formation and behavior of cellular aggregates, in general, is of widespread interest in many fields, including marine and freshwater ecology, healthcare and antibiotic resistance research, biophysics, and microbial evolution. In this field, there are still outstanding questions regarding how microbial aggregates form into communities, including if and how they come together from separate places. Therefore, I believe that researchers from many distinct fields would find interest in the topic of this paper, particularly Figure 5, in which a phase space that is meant to represent the different modes of aggregate formation and destruction is suggested, dependent on properties of the fluid flow and particle concentration.
Altogether, the authors were mostly successful in their investigation, and I find most of their claims to be justified. In particular, the authors achieve strong results from their experiments regarding aggregate fragmentation. However, readers could benefit from some clarification in a couple of key areas. Additionally, I found that some of the authors' claims were based on weak or nonexistent data. Below, I outline the key claims of the paper and indicate the level to which they were supported by their data.
- Their first major claim is that fluid flows alone must be quite strong in order to fragment the cyanobacterial aggregates they have studied. With their rheological chamber, they explicitly show that energy dissipation rates must exceed "natural" conditions by multiple orders of magnitude in order to fragment lab strain colonies, and even higher to disrupt natural strains sampled from a nearby freshwater lake. This claim is well-supported by their experiments and data.
- The authors then claim that the fragmentation of aggregates due to fluid flows occurs through erosion of small pieces. Because their experimental setup does not allow them to explicitly observe this process (for example, by watching one aggregate break into pieces), they implement an idealized model to show that the nature of the changes to the size histogram agrees with an erosion process. However, in Figure 2C there is a noticeable gap between their experiment and the prediction of their model. Additionally, in a similar experiment shown in Figure S6, the experiment cannot distinguish between an idealized erosion model and an alternative, an idealized binary fission model where aggregates split into equal halves. For these reasons, this claim is weakened.
- Their third major claim is that fluid flows only weakly cause cells to collide and adhere in a "coming together" process of aggregate formation. They test this claim in Figure 3, where they suspend single cells in their test chamber and stir them at moderate intensity, monitoring their size histogram. They show that the size histogram changes only slightly, indicating that aggregation is, by and large, not occurring at a high rate. Therefore, they lend support to the idea that cell aggregation likely does not initiate group formation in toxic cyanobacterial blooms. Additionally, they show that the median size of large colonies also does not change at moderate turbulent intensities. These results agree with previous studies (their own citation 25) indicating that aggregates in toxic blooms are clonal in nature. This is an important result and well-supported by their data, but only for this specific particle concentration and stirring intensity. Later, in Figure 5 they show a much broader range of particle concentrations and energy dissipation rates that they leave untested.
- The fourth major result of the manuscript is displayed in Equation 8 and Figure 5, where the authors derive an expression for the ratio between the rate of increase of a colony due to aggregation vs. the rate due to cell division. They then plot this line on a phase map, altering two physical parameters (concentration and fluid turbulence) to show under what conditions aggregation vs. cell division are more important for group formation. Because these results are derived from relatively simple biophysical considerations, they have the potential to be quite powerful and useful and represent a significant conceptual advance. However, there is a region of this phase map that the authors have left untested experimentally. The lowest energy dissipation rate that the authors tested in their experiment seemed to be \dot{epsilon}~1e-2 [m^2/s^3], and the highest particle concentration they tested was 5e-4, which means that the authors never tested Zone II of their phase map. Since this seems to be an important zone for toxic blooms (i.e. the "scum formation" zone), it seems the authors have missed an important opportunity to investigate this regime of high particle concentrations and relatively weak turbulent mixing.
Other items that could use more clarity:
- The authors rely heavily on size distributions to make the claims of their paper. Yet, how they generated those size distributions is not clearly shown in the text. Of primary concern, the authors used a correction function (Equation S1) to estimate the counts of different size classes in their image analysis pipeline. Yet, it is unclear how well this correction function actually performs, what kinds of errors it might produce, and how well it mapped to the calibration dataset the authors used to find the fit parameters.
- Second, in their models they use a fractal dimension to estimate the number of cells in the group from the group radius, but the agreement between this fractal dimension fit and the data is not shown, so it is not clear how good an approximation this fractal dimension provides. This is especially important for their later derivation of the "aggregation-to-cell division" ratio (Equation 8).
Reviewer #2 (Public review):
Summary:
In this work, the authors investigate the role of fluid flow in shaping the colony size of a freshwater cyanobacterium Microcystis. To do so, they have created a novel assay by combining a rheometer with a bright field microscope. This allows them to exert precise shear forces on cyanobacterial cultures and field samples, and then quantify the effect of these shear forces on the colony size distribution. Shear force can affect the colony size in two ways: reducing size by fragmentation and increasing size by aggregation. They find limited aggregation at low shear rates, but high shear forces can create erosion-type fragmentation: colonies do not break in large pieces, but many small colonies are sheared off the large colonies. Overall, bacterial colonies from field samples seem to be more inert to shear than laboratory cultures, which the authors explain in terms of enhanced intercellular adhesion mediated by secreted polysaccharides.
Strengths:
-This study is timely, as cyanobacterial blooms are an increasing problem in freshwater lakes. They are expected to increase in frequency and severeness because of rising temperatures, and it is worthwhile learning how these blooms are formed. More generally, how physical aspects such as flow and shear influence colony formation is often overlooked, at least in part because of experimental challenges. Therefore, the method developed by the authors is useful and innovative, and I expect applications beyond the presented system here.
-A strong feature of this paper is the highly quantitative approach, combining theory with experiments, and the combination of laboratory experiments and field samples.
Weaknesses:
-Especially the introduction seems to imply that shear force is a very important parameter controlling colony formation. However, if one looks at the results this effect is overall rather modest, especially considering the shear forces that these bacterial colonies may experience in lakes. The main conclusion seems that not shear but bacterial adhesion is the most important factor in determining colony size. As the importance of adhesion had been described elsewhere, it is not clear what this study reveals about cyanobacterial colonies that was not known before.
-The agreement between model and experiments is impressive, but the role of the fit parameters in achieving this agreement needs to be further clarified.
-The article may not be very accessible for readers with a biology background. Overall, the presentation of the material can be improved by better describing their new method.