Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorAmit SinghIndian Institute of Science, Bangalore, India
- Senior EditorDominique Soldati-FavreUniversity of Geneva, Geneva, Switzerland
Reviewer #1 (Public review):
Summary:
Ma, Yang et al. report a new investigation aimed at elucidating one of the key nutrients S. Typhimurium (STM) utilizes with the nutrient-poor intracellular niche within the macrophage, focusing on the amino acid beta-alanine. From these data, the authors report that beta-alanine plays an important role in mediating STM infection and virulence. The authors employ a multidisciplinary approach that includes some mouse studies and ultimately propose a mechanism by which panD, involved in B-Ala synthesis, mediates the regulation of zinc homeostasis in Salmonella. The impact of this work is questionable. There are already many studies reporting Salmonella-effector interactions, and while this adds to that knowledge it is not a significant advance over previous studies. While the authors are investigating an interesting question, the work has two important weaknesses; if addressed, the conclusions of this work and broader relevance to bacterial pathogenesis would be enhanced.
Strengths:
This reviewer appreciates the multidisciplinary nature of the work. The overall presentation of the figure graphics are clear and organized.
Weaknesses:
First, this study is very light on mechanistic investigations, even though a mechanism is proposed. Zinc homeostasis in cells, and roles in bacteria infections, are complex processes with many players. The authors have not thoroughly investigated the mechanisms underlying the roles of B-Ala and panD in impacting STM infection such that other factors cannot be ruled out. Defining the cellular content of Zn2+ STM in vivo would be one such route. With further mechanistic studies, the possibility cannot be ruled out that the authors have simply deleted two important genes and seen an infection defect - this may not relate directly to Zn2+ acquisition.
Second, the authors hint at their newly described mechanism/pathway being important for disease and possibly a target for therapeutics. This claim is not justified given that they have employed a single STM strain, which was isolated from chickens and is not even a clinical isolate. The authors could enhance the impact of their findings and relevance to human disease by demonstrating it occurs in human clinical isolates and possibly other serovars. Further, the use of mouse macrophage as a model, and mice, have limited translatability to human STM infections.
Reviewer #2 (Public review):
Summary:
Salmonella exploits host- and bacteria-derived β-alanine to efficiently replicate in host macrophages and cause systemic disease. β-alanine executes this by increasing the expression of zinc transporter genes and therefore the uptake of zinc by intracellular Salmonella.
Strengths:
The experiments designed are thorough and the claims made are directly related to the outcome of the experiments. No overreaching claims were made.
Weaknesses:
A little deeper insight was expected, particularly towards the mechanistic aspects. For example, zinc transport was found to be the cause of the b-alanine-mediated effect on Salmonella intracellular replication. It would have been very interesting to see which are the governing factors that may get activated or inhibited due to Zn accumulation that supports such intracellular replication.
Reviewer #3 (Public review):
Summary:
Salmonella is interesting due to its life within a compact compartment, which we call SCV or Salmonella containing vacuole in the field of Salmonella. SCV is a tight-fitting vacuole where the acquisition of nutrients is a key factor by Salmonella. The authors among many nutrients, focussed on beta-alanine. It is also known from many other studies that Salmonella requires beta-alanine. The authors have done in vitro RAW macrophage infection assays and In vivo mouse infection assays to see the life of Salmonella in the presence of beta-alanine. They concluded by comprehending that beta-alanine modulates the expression of many genes including zinc transporters which are required for pathogenesis.
Strengths:
This study made a couple of knockouts in Salmonella and did a transcriptomic investigation to understand the global gene expression pattern.
Weaknesses:
The following questions are unanswered:
(1) It is not clear how the exogenous beta-alanine is taken up by macrophages.
(2) It is not clear how the Beta-alanine from the cytosol of the macrophage enters the SCV.
(3) It is not clear how the beta-alanine from SCV enters the bacterial cytosol.
(4) There is no clarity on the utilization of exogenous beta-alanine of the host and the de novo synthesis of beta-alanine by panD of Salmonella.