Author response:
Public Reviews:
Reviewer #1 (Public review):
Summary:
The authors in this study extensively investigate how telomere length (TL) regulates hTERT expression via non-telomeric binding of the telomere-associated protein TRF2. They conclusively show that TRF2 binding to long telomeres results in a reduction in its binding to the hTERT promoter. In contrast, short telomeres restore TRF2 binding in the hTERT promoter, recruiting repressor complexes like PRC2, and suppressing hTERT expression. The study presents several significant findings revealing a previously unknown mechanism of hTERT regulation by TRF2 in a TL-dependent manner
Strengths:
(1) A previously unknown mechanism linking telomere length and hTERT regulation through the non-telomeric TRF2 protein has been established strengthening the telomere biology understanding.
(2) The authors used both cancer cell lines and iPSCs to showcase their hypothesis and multiple parameters to validate the role of TRF2 in hTERT regulation.
(3) Comprehensive integration of the recent literature findings and implementation in the current study.
(4) In vivo validation of the findings.
(5) Rigorous controls and well-designed assays have been use.
Weaknesses:
(1) The authors should comment on the cell proliferation and morphology of the engineered cell lines with ST or LT.
The cell proliferation and morphology of the engineered cells were monitored during experiments. With a doubling time within 16-18 hours, all the cancer cell line pairs used in the study were counted and seeded equally before experiments.
No significant difference in morphology or cell count (before harvesting for experiments) was noted for the stable cell lines, namely, HT1080 ST-HT1080 LT, HCT116 p53 null scrambled control-HCT116 p53 null hTERC knockdown.
MDAMB 231 cells which were treated with guanine-rich telomere repeats (GTR) over a period of 12 days, as per the protocol mentioned in Methods. Due to the alternate day of GTR treatment in serum-free media followed by replenishment with serum-supplemented media, we noted that cells would undergo periodic delay in their proliferation (or transient arrest) aligning with the GTR oligo-feeding cycles and appeared somewhat larger in comparison to their parental untreated cells.
Next, the cells with Cas9-telomeric sgRNA mediated telomere trimming were maintained transiently (till 3 days after transfection). During this time, no significant change in morphology or cell proliferation was observed in any of the cell lines, namely HCT116 or HEK293T Gaussia Luciferase reporter cells. iPSCs were also monitored. However, no change in morphology or cellular proliferation was observed during the 5 days post-transfection and antibiotic selection.
(2) Also, the entire study uses engineered cell lines, with artificially elongated or shortened telomeres that conclusively demonstrate the role of hTERT regulation by TRF2 in telomere-length dependent manner, but using ALT negative cell lines with naturally short telomere length vs those with long telomeres will give better perspective. Primary cells can also be used in this context.
The reviewer correctly highlights (as we also acknowledge in the Discussion) that our study primarily utilizes engineered cell lines with artificially elongated or shortened telomeres. We agree that using ALT-negative cells with naturally short versus long telomeres would provide additional perspective in testing our hypothesis. However, a key challenge in this experimental setup is the inherent variation in TRF2 protein levels among these cell types—a parameter central to our hypothesis. Comparing observations across such non-isogenic cell line pairs would require extensive normalization for multiple factors and could introduce additional complexities, potentially raising more questions among scientific readers.
We had also explored primary cells, specifically foreskin fibroblasts and MRC5 lung fibroblasts, as suggested by the reviewer. However, we encountered two significant challenges. To achieve a notable telomere length difference of at least 20%, these primary cells had to undergo a minimum of 25 passages. During this period, we observed a substantial decline in their proliferation capacity and an increased tendency toward replicative senescence. Additionally, we noted a significant reduction in TRF2 protein levels as the primary cells aged, consistent with findings from Fujita K et al., 2010 (Nat Cell Biol.), which reported p53-induced, Siah-1-mediated proteasomal degradation of TRF2. Due to these practical limitations, we focused on cancerous cell lines with an isogenic background, ensuring a controlled experimental framework. This, in turn, opens new avenues for future research to explore broader implications. Investigating other primary cell types that may not present these challenges could be a valuable direction for future studies.
(3) The authors set up time-dependent telomere length changes by dox induction, which may differ from the gradual telomere attrition or elongation that occurs naturally during aging, disease progression, or therapy. This aspect should be explored.
In this study, we utilized a Doxycycline-inducible hTERT expression system to modulate telomere length in cancer cells, aiming to capture any gradual changes that might occur upon steady telomerase induction or overexpression—an event frequently observed in cancer progression. We monitored telomere length and telomerase activity at regular intervals (Supplementary Figure 2), noting a gradual increase until a characteristic threshold was reached, followed by a reversal to the initial telomere length.
While this model provides interesting insights in context of cancer cells, it does not replicate the conditions of aging or therapeutic intervention. We agree that exploring telomere length-dependent regulation of hTERT in normal aging cells is an important avenue for future research. Investigating TRF2 occupancy on the hTERT promoter in response to telomere length alterations through therapeutic interventions—such as telomestatin or imetelstat (telomerase inhibitors) and 6-thio-2’-deoxyguanosine (telomere damage inducer)—would provide valuable insights and warrants further exploration.
(4) How does the hTERT regulation by TRF2 in a TL-dependent manner affect the ETS binding on hTERT mutant promoter sites?
In our previous study (Sharma et al., 2021, Cell Reports), we have experimentally demonstrated that GABPA and TRF2 do not compete for binding at the mutant hTERT promoter (Figure 4M-R). Silencing GABPA in various mutant hTERT promoter cells did not increase TRF2 binding. While GABPA has been reported to show increased binding at the mutant promoter compared to the wild-type (Bell et al., 2015, Science), no telomere length (TL) sensitivity has been noted yet. This manuscript shows that telomere alterations in hTERT mutant cells do not significantly increase TRF2 occupancy at the promoter, reinforcing our earlier findings that G-quadruplex formation is crucial for TRF2 recruitment. Since TRF2 binding does not increase significantly at the mutant promoter and does not compete with GABPA, TL-sensitive TRF2 binding is unlikely to directly influence ETS binding by GABPA. Hence, increased GABPA binding to the mutant promoter as reported in the literature, remains independent of TL-sensitive TRF2 binding. However, an experimental demonstration of the above observation-based speculation would be ideal to answer the query in the future.
(5) Stabilization of the G-quadruplex structures in ST and LT conditions along with the G4 disruption experimentation (demonstrated by the authors) will strengthen the hypothesis.
We agree with the reviewer’s suggestion that stabilizing G-quadruplex (G4) structures in mutant promoter cells under ST and LT conditions would further strengthen our hypothesis. From our ChIP experiments on hTERT promoter mutant cells following G4 stabilization with ligands, as reported in Sharma et al. 2021 (Figure 5G), we observed that TRF2 occupancy was regained in the telomere-length unaltered versions of -124G>A and -146G>A HEK293T Gaussia luciferase cells (referred to as LT cells in the current manuscript).
Based on these published findings, we anticipate a similar restoration of TRF2 binding in the short telomere (ST) versions, given the increased availability of TRF2 protein molecules, as proposed in our Telomere Sequestration Partitioning model.
(6) The telomere length and the telomerase activity are not very consistent (Figure 2A, and S1A, Figure 4B and S3). Please comment.
In this study, we employed both telomerase-dependent and independent methods for telomere elongation.
HT1080 model: Telomere elongation resulted from constitutive overexpression of hTERC and hTERT, leading to a direct correlation with telomerase activity.
HCT116 (p53-null) model: hTERC silencing in ST cells, a known limiting factor for telomerase activity, resulted in significantly lower telomerase activity and a 1.5-fold telomere length difference.
MDAMB231 model: Guanine-rich telomeric repeat (GTR) feeding induced telomere elongation through recombinatorial mechanisms (Wright et al., 1996), leading to significant telomere length gain but no notable change in telomerase activity.
HCT116 Cas9-telomeric sgRNA model: Telomere shortening occurred without modifying telomerase components, resulting in a minor, insignificant increase in telomerase activity (Figure 2A, S1).
Regarding xenograft-derived HT1080 ST and LT cells (Figure 4B, S3), the observed variability in telomere length and telomerase activity may stem from infiltrating mouse cells, which naturally have longer telomeres and higher telomerase activity than human cells. Since in the reported assay tumour masses were not sorted to exclude mouse cells, using species-specific markers or fluorescently labelled HT1080 cells in future experiments would minimize bias. However, even though telomere length and telomerase activity assays cannot differentiate for cross-species differences, mRNA analysis and ChIP experiments performed specifically for hTERT and hTERC mRNA levels, TRF2 occupancy, and H3K27me3 enrichment on hTERT promoter (Figure 4B–E) strongly support our conclusions.
(7) Please comment on the other telomere-associated proteins or regulatory pathways that might contribute to hTERT expression based on telomere length.
The current study provides experimental evidence that TRF2, a well-characterized telomere-binding protein, mediates crosstalk between telomeres and the regulatory region of the hTERT gene in a telomere length-dependent manner. Given the observed link between hTERT expression and telomere length, it is likely that additional telomere-associated proteins and regulatory pathways contribute to this regulation.
The remaining shelterin complex components—POT1, hRap1, TRF1, TIN2, and TPP1—may play crucial roles in this context, as they are integral to telomere maintenance and protection. Additionally, several DNA damage response (DDR) proteins, which interact with telomere-binding factors and help preserve telomere integrity, could potentially influence hTERT regulation in a telomere length-dependent manner. However, direct interactions or regulatory roles would require further experimental validation. Another group of proteins with potential relevance in this mechanism are the sirtuins, which directly associate with telomeres and are known to positively regulate telomere length, undergoing repression upon telomere shortening. Notably, SIRT1 has been reported to interact with telomerase (Lee SE et al., 2024, Biochem Biophys Res Commun.), while SIRT6 has been implicated in TRF2 degradation and telomerase activation. Given their roles in telomere homeostasis, sirtuins may serve as key mediators of telomere length-dependent hTERT regulation.
Beyond protein-mediated mechanisms like the Telomere Sequestration partitioning model, telomere length-dependent regulation of hTERT may also involve chromatin architecture. The Telomere Position Effect—Over Long Distances (TPE-OLD), a phenomenon whereby telomere conformation influences gene expression at distant loci, has been reviewed extensively (Kim et al., 2018, Differentiation).
Reviewer #2 (Public review):
Summary:
Telomeres are key genomic structures linked to everything from aging to cancer. These key structures at the end of chromosomes protect them from degradation during replication and rely on a complex made up of human telomerase RNA gene (hTERC) and human telomerase reverse transcriptase (hTERT). While hTERC is expressed in all cells, the amount of hTERT is tightly controlled. The main hypothesis being tested is whether telomere length itself could regulate the hTERT enzyme. The authors conducted several experiments with different methods to alter telomere length and measured the binding of key regulatory proteins to this gene. It was generally observed that the shortening of telomere length leads to the recruitment of factors that reduce hTERT expression and lengthening of telomeres has the opposite effect. To rule out direct chromatin looping between telomeres and hTERT as driving this effect artificial constructs were designed and inserted a significant distance away and similar results were obtained.
Overall, the claims of telomere length-dependent regulation of hTERT are supported throughout the manuscript.
Strengths:
The paper has several important strengths. Firstly, it uses several methods and cell lines that consistently demonstrate the same directionality of the findings. Secondly, it builds on established findings in the field but still demonstrates how this mechanism is separate from that which has been observed. Specifically, designing and implementing luciferase assays in the CCR5 locus supports that direct chromatin looping isn't necessary to drive this effect with TRF2 binding. Another strength of this paper is that it has been built on a variety of other studies that have established principles such as G4-DNA in the hTERT locus and TRF2 binding to these G4 sites.
Weaknesses:
The largest technical weakness of the paper is that minimal replicates are used for each experiment. I understand that these kinds of experiments are quite costly, and many of the effects are quite large, however, experiments such as the flow cytometry or the IPSC telomere length and activity assays appear to be based on a single sample, and several are based upon two maximum three biological replicates. If samples were added the main effects would likely hold, and many of the assays using GAPDH as a control would result in significant differences between the groups. This unnecessarily weakens the strength of the claims.
We appreciate the reviewer’s recognition of the resource-intensive nature of our experiments, and we are confident in the robustness of the observed results. Due to the project’s timeline constraints and the need for consistency across experiments, we have reported findings based on 3 biological replicates with appropriate statistical analysis.
Regarding the fibroblast-iPSC model, we would like to clarify that we have presented data from two independent biological replicates, each consisting of a fibroblast and its derived iPS cell pair, rather than a single sample. Additionally, the Tel-FACS assay involved analyzing at least 10,000 events, ensuring statistical significance in all cases. Alongside this, we also conducted qRT-PCR-based telomere length determination assays. While both assays were performed, we chose to report the more sensitive Tel-FACS data in the manuscript to provide a clearer representation of the results.
Another detail that weakens the confidence in the claims is that throughout the manuscript there are several examples of the control group with zero variance between any of the samples: e.g. Figure 2K, Figure 3N, and Figure 6G. It is my understanding that a delta delta method has been used for calculation (though no exact formula is reported and would assist in understanding). If this is the case, then an average of the control group would be used to calculate that fold change and variance would exist in the group. The only way I could understand those control group samples always set to 1 is if a tube of cells was divided into conditions and therefore normalized to the control group in each case. A clearer description in the figure legend and methods would be required if this is what was done and repeated measures ANOVA and other statistics should accompany this.
We thank the reviewer for their valuable feedback. In response to the comment about the control group and error calculation, we would like to clarify our approach. In our previous analysis, we set the control group (Day 0) as 1 to calculate the fold change and did not include error bars, as there was no variation in the control group (since all values were normalized to 1). However, as per the reviewer’s suggestion, we will now include error bars on the Day 0 control group. These error bars will be calculated based on the standard deviation (SD) of the Ct values across the biological replicates for the control group. For the Day 10 and Day 24 time points, we retain the error bars that reflect the variance in fold change across replicates, as originally reported.
This adjustment would allow for a clearer representation of the data and variance in the control group. We believe this addresses the reviewer’s concerns about the error calculation, and we shall update the figure legend and methods to reflect these changes. Statistical analysis, including ANOVA, was already applied as indicated in the figure.
A final technical weakness of the paper is the data in Figure 5 where the modified hTERT promoter was inserted upstream of the luciferase gene. Specifically, it is unclear why data was not directly compared between the constructs that could and could not form G4s to make this point. For this reason, the large variance in several samples, and minimal biological replicates, this data was the least convincing in the manuscript (though other papers from this laboratory and others support the claim, it is not convincing standalone data).
We appreciate the reviewer's thoughtful feedback on the presentation of the luciferase assay data in Figure 5. The data for the wild-type hTERT promoter (capable of forming G4 structures) was previously reported in Figure 2G-K. To avoid redundancy in data presentation, we initially chose to report the results of the mutated promoter separately. However, we recognize that directly comparing the wild-type and mutated promoter constructs within the same figure would provide clearer context and strengthen the interpretation of the results. In light of this, we will revise Figure 5 in the updated manuscript to include the data for both constructs, ensuring a more comprehensive and informative comparison.
The second largest weakness of the paper is formatting.
When I initially read the paper without a careful reading of the methods, I thought that the authors did not have appropriate controls meaning that if a method is applied to lengthen, there should be one that is not lengthened, and when a method is applied to shorten, one which is not shortened should be analysed as well. In fact, this is what the authors have done with isogenic controls. However, by describing all samples as either telomere short or telomere long, while this simplifies the writing and the colour scheme, it makes it less clear that each experiment is performed relative to an unmodified. I would suggest putting the isogenic control in one colour, the artificially shortened in another, and the artificially lengthened in another.
Similarly, the graphs, in general, should be consistent with labelling. Figure 2 was the most confusing. I would suggest one dotted line with cell lines above it, and then the method of either elongation or shortening below it. I.e. HT1080 above, hTERC overexpression below, MDAMB-231 above guanine terminal repeats below, like was done on the right. Figure 2 readability would also be improved by putting hTERT promoter GAPDH (-ve control) under each graph that uses this (Panel B and Panel C not just Panel C). All information is contained in the manuscript but one must currently flip between figure legends, methods, and figures to understand what was done and this reduces clarity for the reader.
We sincerely thank the reviewer for their constructive feedback on the formatting and clarity of the figures. We appreciate the time and effort taken to suggest ways to enhance the visual presentation and readability of the manuscript. We agree that clearer differentiation of the experimental groups would help avoid confusion, and we will consider ways to improve the visual organization, as much as possible. Additionally, we will work on restructuring the graphs for greater consistency in labeling and alignment, especially in Figure 2, to improve readability and reduce the need for cross-referencing between the figures, figure legends, and methods section. We will also ensure the hTERT promoter GAPDH (-ve control) label appears under all relevant graphs for consistency. We will make revisions to the figures in line with these suggestions to improve the overall clarity and flow of the manuscript, as much as possible.