Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorSimón Méndez-FerrerUniversity of Cambridge, Cambridge, United Kingdom
- Senior EditorTadatsugu TaniguchiUniversity of Tokyo, Tokyo, Japan
Reviewer #1 (Public review):
Summary:
The topic of nanobody-based PET imaging is important and holds great potential for real-world applications since nanobodies have many advantages over full sized immunoglobulins and small molecules.
Strengths:
The submitted manuscript contains quite a bit of interesting data from a collaborative team of well-respected researchers. The authors are to be congratulated for presenting results that may not have turned out the way they had hoped, and doing so in a transparent fashion.
Weaknesses:
However, the manuscript could be considered to be a collection of exploratory findings rather than a complete and mature scientific exposition. Most of the sample sizes were 3 per group, which is fine for exploratory work, but insufficient to draw strong statistically robust conclusions for definitive results.
Reviewer #2 (Public review):
Summary:
This is a strong and well-described study showing for the first time the use and publicly available resources to use a specific PET tracer to track proliferating transplanted cells in vivo, in a full murine immunecompetent environment.
In this study the authors described a previously developed set of VHH-based PET tracers to track transplants (cancer cells, embryo's) in a murine immune-competent environment.
Strengths:
Unique set of PET tracer and mouse strain to track transplanted cells in vivo without genetic modification of the transplanted cells. This is a unique asset, and a first-in-kind.
Weaknesses:
-some methodological aspects and controls are missing
-no clinical relevance?