Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorGeorge PerryPennsylvania State University, University Park, United States of America
- Senior EditorGeorge PerryPennsylvania State University, University Park, United States of America
Reviewer #1 (Public review):
Summary
Chabukswar et al analysed endogenous retrovirus (ERV) Env variation in a set of primate genomes using consensus Env sequences from ERVs known to be present in hominoids using a Blast homology search with the aim of characterising env gene changes over time. The retrieved sequences were analysed phylogenetically, and showed that some of the integrations are LTR-env recombinants.
Strengths
The strength of the manuscript is that such an analysis has not been performed yet for the subset of ERV Env genes selected and most of the publicly available primate genomes.
Weaknesses
Unfortunately, the weaknesses of the manuscript outnumber its strengths. Especially the methods section does not contain sufficient information to appreciate or interpret the results. The results section contains methodological information that should be moved, while the presentation of the data is often substandard. For instance, the long lists of genomes in which a certain Env was found could better be shown in tables. Furthermore, there is no overview of the primate genomes, or accession numbers, used. It is unclear whether the analyses, such as the phylogenetic trees, are based on nucleotide or amino acid sequences since this is not stated. tBLASTn was used in the homology searches, so one would suppose aa are retrieved. In the Discussion, both env (nt?) and Env (aa?) are used.
For the non-hominoids, genome assembly of publicly available sequences is not always optimal, and this may require Blasting a second genome from a species. Which should for instance be done for the HML2 sequences found in the Saimiri boliviensis genome, but not in the related Callithrix jacchus genome. Finally, the authors propose to analyse recombination in Env sequences but only retrieve env-LTR recombinant Envs, which should likely not have passed the quality check.
Since the Methods section does not contain sufficient information to understand or reproduce the results, while the Results are described in a messy way, it is unclear whether or not the aims have been achieved. I believe not, as characterisation of env gene changes over time is only shown for a few abberrant integrations containing part of the LTR in the env ORF.
Reviewer #2 (Public review):
Summary:
The manuscript by Chabukswar et al. describes a comprehensive attempt to identify and describe the diversity of retroviral envelope (env) gene sequences present in primate genomes in the form of ancient endogenous retrovirus (ERV) sequences.
Strengths:
The focus on env can be justified because of the role the Env proteins likely played in determining viral tropism and host range of the viruses that gave rise to the ERV insertions, and to a lesser extent, because of the potential for env ORFs to be coopted for cellular functions (in the rare cases where the ORF is still intact and capable of encoding a functional Env protein). In particular, these analyses can reveal the potential roles of recombination in giving rise to novel combinations of env sequences. The authors began by compiling env sequences from the human genome (from human endogenous retrovirus loci, or "HERVs") to build consensus Env protein sequences, and then they use these as queries to screen other primate genomes for group-specific envs by tBLASTn. The "groups" referred to here are previously described, as unofficial classifications of endogenous retrovirus sequences into three very broad categories - Class I, Class II and Class III. These are not yet formally recognized in retroviral taxonomy, but they each comprise representatives of multiple genera, and so would fall somewhere between the Family and Genus levels. The retrieved sequences are subject to various analyses, most notably they are screened for evidence of recombination. The recombinant forms appear to include cases that were probably viral dead-ends (i.e. inactivating the env gene) even if they were propagated in the germline.
The availability of the consensus sequences (supplement) is also potentially useful to others working in this area.
Weaknesses:
The weaknesses are largely in presentation. Discussions of ERVs are always complicated by the lack of a formal and consistent nomenclature and the confusion between ERVs as loci and ERVs as indirect information about the viruses that produced them. For this reason, additional attention needs to be paid to precise wording in the text and/or the use of illustrative figures.
Reviewer #3 (Public review):
Summary:
Retroviruses have been endogenized into the genome of all vertebrate animals. The envelope protein of the virus is not well conserved and acquires many mutations hence can be used to monitor viral evolution. Since they are incorporated into the host genome, they also reflect the evolution of the hosts. In this manuscript the authors have focused their analyses on the env genes of endogenous retroviruses in primates. Important observations made include the extensive recombination events between these retroviruses that were previously unknown and the discovery of HML species in genomes prior to the splitting of old and new world monkeys.
Strengths:
They explored a number of databases and made phylogenetic trees to look at the distribution of retroviral species in primates. The authors provide a strong rationale for their study design, they provide a clear description of the techniques and the bioinformatics tools used.
Weaknesses:
The manuscript is based on bioinformatics analyses only. The reference genomes do not reflect the polymorphisms in humans or other primate species. The analyses thus likely under estimates the amount of diversity in the retroviruses. Further experimental verification will be needed to confirm the observations.
Not sure which databases were used, but if not already analyzed, ERVmap.com and repeatmesker are ones that have many ERVs that are not present in the reference genomes. Also, long range sequencing of the human genome has recently become available which may also be worth studying for this purpose.