Phospholipid Scramblase 1 (PLSCR1) Regulates Interferon-Lambda Receptor 1 (IFN-λR1) and IFN-λ Signaling in Influenza A Virus (IAV) Infection

  1. Department of Molecular Microbiology and Immunology, Brown University, Providence, United States
  2. Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine in St. Louis, St Louis, United States
  3. Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, United States

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Ke Cheng
    Yongchuan Hospital of Chongqing Medical University, Chongqing, China
  • Senior Editor
    Carla Rothlin
    Yale University, New Haven, United States of America

Reviewer #1 (Public review):

This manuscript by Yang et al. presents a potentially novel mechanism by which Plscr1 defends against influenza virus infection. Using a global knockout (KO) and a tissue-specific overexpression mouse model, the authors demonstrate that Plscr1-KO mice exhibit increased susceptibility and inflammation following IAV infection. In contrast, overexpression of Plscr1 in ciliated epithelial cells protects mice from infection. Through transcriptomic analysis in mice and mechanistic studies in cell culture models, the authors reveal that Plscr1 transcriptionally upregulates Ifnlr1 expression and physically interacts with this receptor on the plasma membrane, thereby enhancing IFN-λ-mediated viral clearance.

Overall, it's a well-performed study, however, causality between Plscr1 and Ifnlr1 expression needs to be more firmly established. This is because two recent studies of PLSCR1 KO cells infected with different viruses found no major differences in gene expression levels compared with their WT controls (Xu et al. Nature, 2023; LePen et al. PLoS Biol, 2024). There were also defects in the expression of other cytokines (type I and II IFNs plus TNF-alpha) so a clear explanation of why Ifnlr1 was chosen should also be given.

While Plscr1 has long been recognized as a cell-intrinsic antiviral restriction factor, few studies have explored its broader physiological role. This study thus provides interesting insights into a specific function of Plscr1 in IAV-permissive airway epithelial cells and its contribution to whole-body anti-viral immunity. There are three important issues that should be addressed, and several minor points should also be considered.

(1) The authors propose that Plscr1 restricts IAV infection by regulating the type III IFN signaling pathway. While the data show a positive correlation between Ifnlr1 and Plscr1 levels in both mouse and cell culture models, additional evidence is needed to establish causality between the impaired type III IFN pathway, and the increased susceptibility observed in Plscr1-KO mice. To strengthen this conclusion, the following experiments could be undertaken: (i) Measure IAV titers in WT, Plscr1-KO, Ifnlr1-KO, and Plscr1/ Ifnlr1-double KO cells. If the antiviral activity of Plscr1 is highly dependent on Ifnlr1, there should be no further increase in IAV titers in double KO cells compared to single KO cells; (ii) over-express Plscr1 in Ifnlr1-KO cells to determine if it still inhibits IAV infection. If Plscr1's main action is to upregulate Ifnlr1, then it should not be able to rescue susceptibility since Ifnlr1 cannot be expressed in the KO background. If Plscr1 over-expression rescues viral susceptibility, then there are Ifnlr1-independent mechanisms involved. These experiments should help clarify the relative contribution of the type III IFN pathway to Plscr1-mediated antiviral immunity.

(2) Transcriptional activation of IFNLR1 by Plscr1 is a central mechanistic conclusion of this manuscript. A ChIP assay was used to demonstrate direct binding between Plscr1 and the Ifnrl1 promoter region. This single evidence does not sufficiently prove the role of Plscr1 in transcriptional activation. Other forms of evidence would help make this mechanistic explanation more compelling. For example, nuclear un-on experiments would demonstrate Ifnrl1 mRNA synthesis in addition to promoter binding.

(3) In Figure 4, the authors demonstrate the interaction between Plscr1 and Ifnlr1. They suggest that this interaction modulates IFN-λ signaling. However, Figures 5C-E show that the 5CA mutant, which lacks surface localization and the ability to bind Ifnlr1, exhibits similar anti-flu activity to WT Plscr1. Does this mean the interaction between Plscr1 and Ifnlr1 is dispensable for Plscr1-mediated antiviral function? Can the authors compare the activation of IFN-λ signaling pathway in Plscr1-KO cells expressing empty vector, WT Plscr1, and 5CA mutant? This could be done by measuring downstream ISG expression or using an ISRE-luciferase reporter assay upon IFN-λ treatment.

Reviewer #2 (Public review):

This nice study explores the role of phospholipid scramblase 1 (PLSCR1) in regulating antiviral immunity and host morbidity during influenza A virus (IAV) infection. The authors identify PLSCR1 as a critical regulator of interferon-lambda receptor 1 (IFNLR1) expression, acting through enzymatic-independent mechanisms. Using PLSCR1-deficient and conditional overexpression mouse models, the study demonstrates that PLSCR1 enhances antiviral responses and mitigates inflammation, potentially through modulating type III interferon (IFN-λ) signaling. While the findings underline the importance of PLSCR1 in early viral control and tissue homeostasis, they also highlight its cell-specific functions, particularly in ciliated airway epithelial cells. This work contributes to understanding the interplay between host factors and antiviral pathways, paving the way for novel therapeutic strategies targeting host proteins.

Specific Comments:

(1) The statement that type I interferons are expressed by "almost all cells" is inaccurate (line 61). Type I IFN production is also context-dependent and often restricted to specific cell types upon infection or stimulation.

(2) The antiviral response is assessed solely through flu M gene expression. Incorporating infectious virus titers (e.g., TCID50 or plaque assay) would provide a more robust and direct measure of antiviral activity.

(3) While mRNA expression of interferons is measured, protein levels (e.g., through ELISA) should also be quantified to establish the functional relevance of IFN expression changes.

(4) It is unclear whether reduced IFNLR1 expression translates to defective downstream signaling or antiviral responses after IFN-λ treatment in PLSCR1-deficient cells. This is particularly pertinent given the increase in IFN-λ ligand in vivo, which might compensate for receptor downregulation.

(5) Detailed gating strategies for immune cell subsets are absent and should be included for clarity and reproducibility.

(6) The study does not definitively establish that reduced IFN-λ signaling causes the observed in vivo phenotype. Increased morbidity and mortality in PLSCR1-deficient mice could also stem from elevated TNF-α levels and lung damage, as proinflammatory cytokines and/or enhanced lung damage are known contributors to influenza morbidity and mortality. This point warrants detailed discussions.

Reviewer #3 (Public review):

Summary:

Yang et al. have investigated the role of PLSCR1, an antiviral interferon-stimulated gene (ISG), in host protection against IAV infection. Although some antiviral effects of PLSCR1 have been described, its full activity remains incompletely understood.

This study now shows that Plscr1 expression is induced by IAV infection in the respiratory epithelium, and Plscr1 acts to increase Ifn-λr1 expression and enhance IFN-λ signaling possibly through protein-protein interactions on the cell membrane.

Strengths:

The study sheds light on the way Ifnlr1 expression is regulated, an area of research where little is known. The study is extensive and well-performed with relevant genetically modified mouse models and tools.

Weaknesses:

There are some issues that need to be clarified/corrected in the results and figures as presented.

Also, the study does not provide much information about the role of PLSCR1 in the regulation of Ifn-λr1 expression and function in immune cells. This would have been a plus.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation