Computer prediction and genetic analysis identifies retinoic acid modulation as a driver of conserved longevity pathways in genetically-diverse Caenorhabditis nematodes

  1. Institute of Ecology and Evolution, University of Oregon, Eugene, USA
  2. Rutgers University, Dept. of Molecular Biology and Biochemistry, Piscataway, USA
  3. The Buck Institute for Research on Aging, Novato, USA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Arjumand Ghazi
    University of Pittsburgh School of Medicine, Pittsburgh, United States of America
  • Senior Editor
    Pankaj Kapahi
    Buck Institute for Research on Aging, Novato, United States of America

Reviewer #1 (Public review):

Summary:

This study highlights the strengths of using predictive computational models to inform C. elegans screening studies of compounds' effects on aging and lifespan. The authors primarily focus on all-trans retinoic acid (atRA), one of the 5 compounds (out of 16 tested) that extended C. elegans lifespan in their experiments. They show that atRA has positive effects on C. elegans lifespan and age-related health, while it has more modest and inconsistent effects (i.e., some detrimental impacts) for C. briggsae and C. tropicalis. In genetic experiments designed to evaluate contributing mediators of lifespan extension with atRA exposure, it was found that 150 µM of atRA did not significantly extend lifespan in akt-1 or akt-2 loss-of-function mutants, nor in animals with loss of function of aak-2, or skn-1 (in which atRA had toxic effects); these genes appear to be required for atRA-mediated lifespan extension. hsf-1 and daf-16 loss-of-function mutants both had a modest but statistically significant lifespan extension with 150 µM of atRA, suggesting that these transcription factors may contribute towards mediating atRA lifespan extension, but that they are not individually required for some lifespan extension. RNAseq assessment of transcriptional changes in day 4 atRA-treated adult wild-type worms revealed some interesting observations. Consistent with the study's genetic mutant lifespan observations, many of the atRA-regulated genes with the greatest fold-change differences are known regulated targets of daf-2 and/or skn-1 signaling pathways in C. elegans. hsf-1 loss-of-function mutants show a shifted atRA transcriptional response, revealing a dependence on hsf-1 for ~60% of the atRA-downregulated genes. On the other hand, RNAseq analysis in aak-2 loss-of-function mutants revealed that aak-2 is only required for less than a quarter of the atRA transcriptional response. All together, this study is proof of the concept that computational models can help optimize C. elegans screening approaches that test compounds' effects on lifespan, and provide comprehensive transcriptomic and genetic insights into the lifespan-extending effects of all-trans retinoic acid (atRA).

Strengths:

(1) A clearly described and well-justified account describes the approach used to prioritize and select compounds for screening, based on using the top candidates from a published list of computationally ranked compounds (Fuentealba et al., 2019) that were cross-referenced with other bioinformatics publications to predict anti-aging compounds, after de-selecting compounds previously evaluated in C. elegans as per the DrugAge database. 16 compounds were tested at 4-5 different concentrations to evaluate effects on C. elegans lifespan.

(2) Robust experimental design was undertaken evaluating the lifespan effects of atRA, as it was tested on three strains each of C. elegans, C. briggsae, and C. tropicalis, with trial replication performed at three distinct laboratories. These observations extended beyond lifespan to include evaluations of health metrics related to swimming performance.

(3) In-depth analyses of the RNAseq data of whole-worm transcriptional responses to atRA revealed interesting insights into regulator pathways and novel groups of genes that may be involved in mediating lifespan-extension effects (e.g., atRA-induced upregulation of sphingolipid metabolism genes, atRA-upregulation of genes in a poorly-characterized family of C. elegans paralogs predicted to have kinase-like activity, and disproportionate downregulation of collagen genes with atRA).

Weaknesses:

(1) The authors' computational-based compound screening approach led to a ~30% prediction success rate for compounds that could extend the median lifespan of C. elegans. However, follow-up experiments on the top compounds highlighted the fact that some of these observed "successes" could be driven by indirect, confounding effects of these compounds on the bacterial food source, rather than direct beneficial effects on C. elegans physiology and lifespan. For instance, this appeared to be the case for the "top" hit of propranolol; other compounds were not tested with metabolically inert or killed bacteria. In addition, there are no comparative metrics provided to compare this study's ~30% success rate to screening approaches that do not use computational predictions.

(2) Transcriptomic analyses of atRA effects were extensive in this study, but evaluations and discussions of non-transcriptional effects of key proposed regulators (such as AMPK) were limited. For instance, non-transcriptional effects of aak-2/AMPK might account for its requirement for mediating lifespan extension effects, since aak-2 was not required for a major proportion of atRA transcriptional responses.

Reviewer #2 (Public review):

Summary:

In this manuscript, Banse et al. experimentally validate the power of computational approaches that predict anti-aging molecules using the multi-species approach of the Caenorhabditis Intervention Testing Program (CITP). Filtering candidate molecules based on transcriptional profiles, ML models, literature searches, and the DrugAge database, they selected 16 compounds for testing. Of those, eight did not affect C.elegan's lifespan, three shortened it, and five extended C.elegan's lifespan, resulting in a hit rate of over 30%. Of those five, they then focused on all-trans-retinoic acid (atRA), a compound that has previously resulted in contradictory effects. The lifespan-extending effect of atRA was consistent in all C. elegans strains tested, was absent in C. briggsae, and a small effect was observed in some C. tropicalis strains. Similar results were obtained for measures of healthspan. The authors then investigated the mechanism of action of atRA and showed that it was only partially dependent on daf-16 but required akt-1, akt-2, skn-1, hsf-1, and, to some degree, pmk-1. The authors further investigate the downstream effects of atRA exposure by conducting RNAseq experiments in both wild-type and mutant animals to show that some, but surprisingly few, of the gene expression changes that are observed in wild-type animals are lost in the hsf-1 and aak-2 mutants.

Strengths:

Overall, this study is well conceived and executed as it investigates the effect of atRA across different concentrations, strains, and species, including life and health span. Revealing the variability between sites, assays, and the method used is a powerful aspect of this study. It will do a lot to dispel the nonsensical illusion that we can determine a percent increase in lifespan to the precision of two floating point numbers.

An interesting and potentially important implication arises from this study. The computational selection of compounds was agnostic regarding strain or species differences and was predominantly based on observations made in mammalian systems. The hit rate calculated is based on the results of C. elegans and not on the molecules' effectiveness in Briggsae or Tropicalis. If it were, the hit rate would be much lower. How is that? It would suggest that ML models and transcriptional data obtained from mammals have a higher predictive value for C. elegans than for the other two species. This selectivity for C.elegans over C.tropicalis and C.Briggsae seems both puzzling and unexpected. The predictions for longevity were based on the transcriptional data in cell lines. Would it be feasible to compare the mammalian data to the transcriptional data in Figure 5 and see how well they match? While this is clear beyond the focus of this study, an implied prediction is that running RNAseqs for all these strains exposed to atRA would reveal that the transcriptional changes observed in the strains where it extends lifespan the most should match the mammalian data best. Otherwise, how could the mammalian datasets be used to predict the effects of C.elegans over C.Briggsae or C.Tropicalis have more predictive for one species than the other? There are a lot of IFs in this prediction, but such an experiment would reconsider and validate the basis on which the original predictions were made.

Weaknesses:

Many of the most upregulated genes, such as cyps and pgps are xenobiotic response genes upregulated in many transcriptional datasets from C.elegans drug studies. Their expression might be necessary to deal with atRA breakdown metabolites to prevent toxicity rather than confer longevity. Because atRA is very light sensitive and has toxicity of breakdown, metabolites may explain some of the differences observed with the lifespan of machine effects compared to standard assay practices.

Reviewer #3 (Public review):

Summary:

In this study, Banse et al., demonstrate that combining computer prediction with genetic analysis in distinct Caenorhabditis species can streamline the discovery of aging interventions by taking advantage of the diverse pool of compounds that are currently available. They demonstrate that through careful prioritization of candidate compounds, they are able to accomplish a 30% positive hit rate for interventions that produce significant lifespan extensions. Within the positive hits, they focus on all-trans retinoic acid (atRA) and discover that it modulates lifespan through conserved longevity pathways such as AKT-1 and AKT-2 (and other conserved Akt-targets such as Nrf2/SKN-1 and HSF1/HSF-1) as well as through AAK-2, a conserved catalytic subunit of AMPK. To better understand the genetic mechanisms behind lifespan extension upon atRA treatment, the authors perform RNAseq experiments using a variety of genetic backgrounds for cross-comparison and validation. Using this current state-of-the-art approach for studying gene expression, the authors determine that atRA treatment produces gene expression changes across a broad set of stress-response and longevity-related pathways. Overall, this study is important since it highlights the potential of combining traditional genetic analysis in the genetically tractable organism C. elegans with computational methods that will become even more powerful with the swift advancements being made in artificial intelligence. The study possesses both theoretical and practical implications not only in the field of aging but also in related fields such as health and disease. Most of the claims in this study are supported by solid evidence, but the conclusions can be refined with a small set of additional experiments or re-analysis of data.

Strengths:

(1) The criteria for prioritizing compounds for screening are well-defined and easy to replicate (Figure 1), even for scientists with limited experience in computational biology. The approach is also adaptable to other systems or model organisms.

(2) I commend the researchers for doing follow-up experiments with the compound propranolol to verify its effect on lifespan (Figure 2 Supplement 2), given the observation that it affected the growth of OP50. To prevent false hits in the future, the reviewer recommends the use of inactivated OP50 for future experiments to remove this confounding variable.

(3) The sources of variation (Figure 3, Figure Supplement 2) are taken into account and demonstrate the need for advancing our understanding of the lifespan phenotype due to inter-individual variation.

(4) The addition of the C. elegans swim test in addition to the lifespan assays provides further evidence of atRA-induced improvement in longevity.

(5) The RNAseq approach was performed in a variety of genetic backgrounds, which allowed the authors to determine the relationship between AAK-2 and HSF-1 regulation of the retinoic acid pathway in C. elegans, specifically, that the former functions downstream of the latter.

Weaknesses:

(1) The filtering of compounds for testing using the DrugAge database requires that the database is consistently updated. In this particular case, even though atRA does not appear in the database, the authors themselves cite literature that has already demonstrated atRA-induced lifespan extension, which should have precluded this compound from the analysis in the first place.

(2) The threshold for determining positive hits is arbitrary, and in this case, a 30% positive hit rate was observed when the threshold is set to a lifespan extension of around 5% based on Figure 1B (the authors fail to explicitly state the cut-off for what is considered a positive hit).

(3) The authors demonstrate that atRA extends lifespan in a species-specific manner (Figure 3). Specifically, this extension only occurs in the species C. elegans yet, the title implies that atRA-induced lifespan extension occurs in different Caenorhabditis species when it is clearly not the case. While the authors state that failure to observe phenotypes in C. briggsae and C. tropicalis is a common feature of CITP tests, they do not speculate as to why this phenomenon occurs.

(4) There are discrepancies between the lifespan curves by hand (Figure 3 Figure Supplement 1) and using the automated lifespan machine (Figure 3 Supplement 3). Specifically, in the automated lifespan assays, there are drastic changes in the slope of the survival curve which do not occur in the manual assays. This may be due to improper filtering of non-worm objects, improper annotation of death times, or improper distribution of plates in each scanner.

(5) The authors miss an opportunity to determine whether the lifespan extension phenotype attributed to the retinoic acid pathway is mostly transcriptional in nature or whether some of it is post-transcriptional. The authors even state "that while aak-2 is absolutely required for the longevity effects of atRA, aak-2 is required only for a small proportion (~1/4) of the transcriptional response", suggesting that some of the effects are post-transcriptional. Further information could have been obtained had the authors also performed RNAseq analysis on the tol-1 mutant which exhibited an enhanced response to atRA compared to wild-type animals, and comparing the magnitude of gene expression changes between the tol-1 mutant and all other genetic backgrounds for which RNAseq was performed.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation