Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJoseph PalatinusUniversity of Utah, Salt Lake City, United States of America
- Senior EditorOlujimi AjijolaUniversity of California, Los Angeles, Los Angeles, United States of America
Reviewer #1 (Public review):
Summary:
Pavel et al. analyzed a cohort of atrial fibrillation (AF) patients from the University of Illinois at Chicago, identifying TTN truncating variants (TTNtvs) and TTN missense variants (TTNmvs). They reported a rare TTN missense variant (T32756I) associated with adverse clinical outcomes in AF patients. To investigate its functional significance, the authors modeled the TTN-T32756I variant using human induced pluripotent stem cell-derived atrial cardiomyocytes (iPSC-aCMs). They demonstrated that mutant cells exhibit aberrant contractility, increased activity of the cardiac potassium channel KCNQ1 (Kv7.1), and dysregulated calcium homeostasis. Interestingly, these effects occurred without compromising sarcomeric integrity. The study further identified increased binding of the titin-binding protein Four-and-a-Half Lim domains 2 (FHL2) with KCNQ1 and its modulatory subunit KCNE1 in the TTN-T32756I iPSC-aCMs.
Strengths:
This work has translational potential, suggesting that targeting KCNQ1 or FHL2 could represent a novel therapeutic strategy for improving cardiac function. The findings may also have broader implications for treating patients with rare, disease-causing variants in sarcomeric proteins and underscore the importance of integrating genomic analysis with experimental evidence to advance AF research and precision medicine.
Weaknesses:
(1) Variant Identification: It is unclear how the TTN missense variant (T32756I) was identified using REVEL, as none of the patients' parents reportedly carried the mutation or exhibited AF symptoms. Are there other TTN variants identified in the three patients carrying TTN-T32756I? Clarification on this point is necessary.
(2) Patient-Specific iPSC Lines: Since the TTN-T32756I variant was modeled using only one healthy iPSC line, it is unclear whether patient-specific iPSC-derived atrial cardiomyocytes would exhibit similar AF-related phenotypes. This limitation should be addressed.
(3) Hypertension as a Confounding Factor: The three patients carrying TTN-T32756I also have hypertension. Could the hypertension associated with this variant contribute secondarily to AF? The authors should discuss or rule out this possibility.
(4) FHL2 and KCNQ1-KCNE1 Interaction: Immunostaining data demonstrating the colocalization of FHL2 with the KCNQ1-KCNE1 (MinK) complex in TTN-T32756I iPSC-aCMs are needed to strengthen the mechanistic findings.
(5) Functional Characterization of FHL2-KCNQ1-KCNE1 Interaction: Additional functional assays are necessary to characterize the interaction between FHL2 and the KCNQ1-KCNE1 complex in TTN-T32756I iPSC-aCMs to further validate the proposed mechanism.
Reviewer #2 (Public review):
Summary:
The authors present data from a single-center cohort of African-American and Hispanic/Latinx individuals with atrial fibrillation (AF). This study provides insight into the incidences and clinical impact of missense variants in the Titin (TTN) gene in this population. In addition, the authors identified a single amino acid TTN missense variant (TTN-T32756I) that was further studied using human induced pluripotent stem cell-derived atrial cardiomyocytes (iPSC-aCMs). These studies demonstrated that the Four-and-a-Half Lim domains 2 (FHL2), has increased binding with KCNQ1 and its modulatory subunit KCNE1 in the TTN-T32756I-iPSC-aCMs, enhancing the slow delayed rectifier potassium current (Iks) and is a potential mechanism for atrial fibrillation. Finally, the authors demonstrate that suppression of FHL2 could normalize the Iks current.
Strengths:
The strengths of this manuscript/study are listed below:
(1) This study includes a previously underrepresented population in the study of the genetic and mechanistic basis of AF.
(2) The authors utilize current state-of-the-art methods to investigate the pathogenicity of a specific TTN missense variant identified in this underrepresented patient population.
(3) The findings of this study identify a potential therapeutic for treating atrial fibrillation.
Weaknesses:
(1) The authors do not include a non-AF group when evaluating the incidence and clinical significance of TTN missense variants in AF patients.
(2) The authors do not provide evidence that TTN-T32756I-iPSC-aCMs are arrhythmogenic only that there is an increase in the Iks current and associated action potential changes. More specifically, the authors report "compared to the WT, TTN-T32756I-iPSC-aCMs exhibited increased arrhythmic frequency" yet is it is unclear what they are referring to by "arrhythmic frequency".
(3) There seem to be discrepancies regarding the impact of the TTN-T32756I variant on mechanical function. Specifically, the authors report "both reduced contraction and abnormal relaxation in TTN-T32756I-iPSC-aCMs" yet, separately report "the contraction amplitude of the mutant was also increased . . . suggesting an increased contractile force by the TTN-T32756I-iPSC-aCMs and TTN-T32756I-iPSC-CMs exhibited similar calcium transient amplitudes as the WT."
Reviewer #3 (Public review):
Summary:
The authors describe the abnormal contractile function and cellular electrophysiology in an iPSC model of atrial myocytes with a titin missense variant. They provide contractility data by sarcomere length imaging, calcium imaging, and voltage clamp of the repolarizing current iKs. While each of the findings is separately interesting, the paper comes across as too descriptive because there is no merging of the data to support a cohesive mechanistic story/statement, especially from the electrophysiological standpoint. There is definitely not enough support for the title "A Titin Missense Variant Causes Atrial Fibrillation", since there is no strong causative evidence at all. There is some interesting clinical data regarding the variant of interest and its association with HF hospitalization, which may lead to future important discoveries regarding atrial fibrillation.
Strengths:
The manuscript is well written and there is a wide range of experimental techniques to probe this atrial fibrillation model.
Weaknesses:
(1) While the clinical data is interesting, it is extremely important to rule out heart failure with preserved EF as a confounder. HFpEF leads to AF due to increased atrial remodeling, so the fact that patients with this missense variant have increased HF hospitalizations does not necessarily directly support the variant as causative of AF. It could be that the variant is actually associated directly with HFpEF instead, and this needs to be addressed and corrected in the analyses.
(2) All of the contractility and electrophysiologic data should be done with pacing at the same rate in both control and missense variant groups, to control for the effect of cycle length on APD and calcium loading. A claim of shorter APD cannot be claimed when the firing rate of one set of cells is much faster than the other, since shorter APD is to be expected with a faster rate. Similarly, contractility is affected by diastolic interval because of the influence of SR calcium content on the myocyte power stroke. So the cells need to be paced at the same rate in the IonOptix for any direct comparison of contractility. The authors should familiarize themselves with the concept of electrical restitution.
(3) It is interesting that the firing rate of the myocytes is faster with the missense variant. This should lead to a hypothesis and investigation of abnormal automaticity or triggered activity, which may also explain the increased contractility since all these mechanisms are related to the calcium clock and calcium loading of the SR. See #2 above for suggestions on how to adequately probe calcium handling. Such an investigation into impulse initiation mechanisms would be very powerful in supporting the primary statement of the paper since these are actual mechanisms thought to cause AF.
(4) The claim of shortened APD without correcting for cycle length is problematic. However, the general concept of linking shortened APD in isolated cells alone to AF causation is more problematic. To have a setup for reentry, there must be a gradient of APD from short to long, and this can only be demonstrated at the tissue level, not really at the cellular level, so reentry should not be invoked here. If shortened APD is demonstrated with correction of the cycle length problem, restitution curves can be made showing APD shortening at different cycle lengths. If restitution is abnormal (i.e. the APD does not shorten normally in relation to the diastolic interval), this may lead to triggered activity which is an arrhythmogenic mechanism. This would also tie in well with the finding of abnormally elevated iKs current since iKs is a repolarizing current directly responsible for restitution.