Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorMerritt MadukeStanford University, Stanford, United States of America
- Senior EditorMerritt MadukeStanford University, Stanford, United States of America
Reviewer #1 (Public review):
Summary:
This study provides new insight into the non-canonical voltage-gating mechanism of BK channels through prolonged (10 μs) MD simulations of the Slo1 transmembrane domain conformation and K+ conduction in response to high imposed voltages (300, 750 mV). The results support previous conclusions based on functional and structural data and MD simulations that the voltage-sensor domain (VSD) of Slo1 undergoes limited conformational changes compared to Kv channels, and predicts gating charge movement comparable in magnitude to experimental results. The gating charge calculations further indicate that R213 and R210 in S4 are the main contributors owing to their large side chain movements and the presence of a locally focused electric field, consistent with recent experimental and MD simulation results by Carrasquel-Ursulaez et al.,2022. Most interestingly, changes in pore conformation and K+ conduction driven by VSD activation are resolved, providing information regarding changes in VSD/pore interaction through S4/S5/S6 segments proposed to underly electromechanical coupling.
Strengths:
Include that the prolonged timescale and high voltage of the simulation allow apparent equilibration in the voltage-sensor domain (VSD) conformational changes and at least partial opening of the pore. The study extends the results of previous MD simulations of VSD activation by providing quantitative estimates of gating charge movement, showing how the electric field distribution across the VSD is altered in resting and activated states, and testing the hypothesis that R213 and R210 are the primary gating charges by steered MD simulations. The ability to estimate gating charge contributions of individual residues in the WT channel is useful as a comparison to experimental studies based on mutagenesis which have yielded conflicting results that could reflect perturbations in structure. Use of dynamic community analysis to identify coupling pathways and information flow for VSD-pore (electromechanical) coupling, as well as analysis of state-dependent S4/S5/S6 interactions that could mediate coupling, provides useful predictions extending beyond what has been experimentally tested.
Weaknesses:
Include that a truncated channel (lacking the C-terminal gating ring) was used for simulations, which is known to have reduced single channel conductance and reduced electromechanical coupling compared to the full-length channel. In addition, as VSD activation in BK channels is much faster than opening, the timescale of simulations was likely insufficient to achieve a fully open state, as supported by differences in the degree of pore expansion in replicate simulations, which are also smaller than observed in Ca-bound open structures of the full-length channel. Taken together, these limitations suggest that the analysis regarding coupling pathways and interactions is incomplete. In addition, while the simulations convincingly demonstrate voltage-dependent channel opening as evidenced by pore expansion, and conduction of K+ and water through the pore, single channel conductance is underestimated by at least an order of magnitude, as in previous studies of other K+ channels. These quantitative discrepancies suggest that MD simulations may not yet be sufficiently advanced to provide insight into mechanisms underlying the extraordinarily large conductance of BK channels.
Reviewer #2 (Public review):
Summary:
This manuscript addresses the structural basis of voltage-activation of BK channels using computational approaches. Although a number of experimental studies using gating current and patch-clamp recording have analyzed voltage-activation in terms of observed charge movements and the apparent energetic coupling between voltage-sensor movement and channel opening, the structural changes that underlie this phenomenon have been unclear. The present studies use a reduced molecular system comprising the transmembrane portion of the BK channel (i.e., the cytosolic domain was deleted), embedded in a POPC membrane, with either 0 or 750 mV applied across the membrane. This system enabled acquisition of long simulations of 10 microseconds, to permit tracking of conformational changes of the channel. The authors' principal findings were that the side chains of R210 and R213 rapidly moved toward the extracellular side of the membrane (by 8 - 10 Å), with greater displacements than any of the other charged transmembrane residues. These movements appeared tightly coupled to the movement of the pore-lining helix, pore hydration, and ion permeation. The authors estimate that R210 and R213 contribute 0.25 and 0.19 elementary charges per residue to the gating current, which is roughly consistent with estimates based on electrophysiological measurements that used the full-length channel.
Strengths:
The methodologies used in this work are sound, and these studies certainly contribute to our understanding of voltage-gating of BK channels. An intriguing observation is the strongly coupled movement of the S4, S5, and S6 helices that appear to underlie voltage-dependent opening. Based on Figures 2a-d, the substantial movements of the R210 and R213 side chains occur nearly simultaneously to the S6 movement (between 4 - 5 usec of simulation time). This seems to provide support for a "helix-packing" mechanism of voltage gating in the so-called "non-domain-swapped" voltage-gated K channels.
Weaknesses:
The main limitation is that these studies used a truncated version of the BK channel, and there are likely to be differences in VSD-pore coupling in the context of the full-length channels that will not be resolved in the present work. Nonetheless, the authors provide a strong rationale for their use of the truncated channel, and the results presented will provide a good starting point for future computational studies of this channel.