Nora virus proliferates in dividing intestinal stem cells and sensitizes flies to intestinal infection and oxidative stress

  1. UPR 9022 CNRS, IBMC, University of Strasbourg, Strasbourg, France
  2. The Francis Crick Institute, London, United Kingdom
  3. Institute of Translational Medicine and Liver Disease, Inserm U1110, Strasbourg, France
  4. Institute for Parasitology and Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
  5. Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
  6. UMR 7104 CNRS, U964 INSERM, IGBMC, University of Strasbourg, Strasbourg, France
  7. UMR 7178 CNRS, Institut Pluridisciplinaire Hubert Curien, Strasbourg, France

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Bruno Lemaitre
    École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
  • Senior Editor
    Wendy Garrett
    Harvard T.H. Chan School of Public Health, Boston, United States of America

Reviewer #1 (Public review):

Summary:

This important article reveals that the Nora virus can colonize the intestinal cells of Drosophila melanogaster, where it persists with minimal immediate impact on its host. However, upon aging, infection, or exposure to toxicants, stem cell activation induces Nora virus proliferation, enabling it to colonize enterocytes. This colonization disrupts enterocyte function, leading to increased gut permeability and a significant reduction in lifespan. Results are convincing with an important impact on the Drosophila community.

Strengths:

(1) Building on previous studies by Habayeb et al. (2009) and Hanson et al. (2023), this study highlights cryptic Nora virus infection as a crucial factor in aging and gut homeostasis in Drosophila melanogaster.

(2) Consistent with the oral route of Nora virus transmission, the study demonstrates that the virus resides in intestinal stem cells, with its replication directly linked to stem cell proliferation. This process facilitates the colonization of enterocytes, ultimately disrupting intestinal function.

(3) The study establishes a clear connection between stem cell proliferation and virus replication, suggesting that various factors - such as microbiota, aging, diet, and injury - can influence Nora virus dynamics and associated pathology.

(4) The experimental design is robust, comparing infected flies with virus-cured controls to validate findings.

Weaknesses:

(1) The study does not explore or discuss how oral ingestion of Nora virus leads to the colonization of stem cells, which are located basally in the gut. This mechanism should be discussed.

(2) The authors fail to detect Dicer-GFP fusion protein expression in stem cells, a finding that could explain why the virus persists in these cells. Further investigation is needed to determine whether RNAi functions are effective in stem cells compared to enterocytes. For clarification, the authors could cross esg-Gal4 UAS-GFP and Myo-Gal4 UAS-GFP with UAS GFP-RNAi and/or express a Dicer-GFP construct under a stem cell-specific driver.

(3) The presentation of experimental parameters (e.g., pathogen type, temperature, time points) should be improved in the results section and at the top of the figures to enhance clarity. Additionally, details regarding the mode of oral infection (continuous exposure vs. single feeding on a filter) should be specified. Given that fly stock flipping frequency influences microbiota load (as noted in Broderick et al.), this should be reported, especially for lifespan studies.

(4) To confirm that enterocyte colonization requires stem cell proliferation and differentiation, the authors should analyze Nora virus localization in JAK-STAT-deficient flies infected with bacteria or toxicants. This would help determine whether the virus can infect enterocytes in the absence of enterocyte differentiation, but stimulation of stem cells.

(5) The study does not discuss the spatial distribution of Nora virus infection along the gut. Specifically, it remains unclear whether viral colonization is higher in gut regions R2 and R3, which contain proliferative stem cells. Addressing this could provide valuable insights into the virus's infection dynamics.

Reviewer #2 (Public review):

Summary:

In this manuscript, the authors report that Nora virus, a natural Drosophila pathogen that also persistently infects many laboratory fly stocks, infects intestinal stem cells (ISCs), leading to a shorter life span and increased sensitivity to intestinal infection with the Pseudomonas bacterium. Nora virus infection was associated with an increased proliferation of ISC and disrupted gut barrier function. Genetically, the authors show that increased ISC division in Nora virus and Pseudomonas coinfected flies is driven by signaling through the JAK-STAT pathway and apoptosis.

Accordingly, blocking apoptosis and JAK-STAT signaling reduces viral load, suggesting that in this context the JAK-STAT pathway is proviral in contrast to other previous observations in systemically infected flies. This work adds to the findings of another recent paper showing that another persistent fruit fly virus, Drosophila A virus, also increases ISC proliferation and decreases gut barrier function. Intestinal viruses should therefore be considered confounders in studies of fly intestinal physiology.

Strengths:

Overall, the data are convincing and robust, starting with two wildtype fly stocks (Ore-R strain) that differ in their Nora virus infection status, followed by experiments in which cleared stocks are reinfected with a purified Nora virus stock preparation. The conclusions of the paper will be of interest to scientists working on insect physiology, virology, and immunology, but should also serve as a warning for scientists that use the fly as a model to study gut physiology.

Weaknesses:

The title does not seem to be fully supported by the data. While the authors convincingly show the increased sensitivity to Pseudomonas infection, effects on another tested bacterium, Serratia marcescens, were not significantly different between Nora-virus-infected and non-infected flies. Thus effects of 'intestinal infection' seem to be too broad a claim. Also, whether the Nora virus increases sensitivity to oxidative stress is not so clear to me: the figure that supports this claim is the survival assay of Figure 5F. However, the difference in survival between control and paraquat-treated Nora (-) flies seems to be in the same order as between control and paraquat-treated Nora (+) flies. Rather, cause and effect seem to be the reverse: paraquat increases ISC proliferation, higher viral loads, and consequently shorter survival. I suggest rephrasing the title and conclusions accordingly.

Quantification of immunofluorescence microscopy is missing, rendering the images somewhat anecdotal. Quantification should be provided. It will then also be of interest to quantify the number of Nora(+) cells and the Nora virus levels per infected cell (e.g. Figure 5H). Also, the claim that the Nora virus initially infects ISC and later (upon stress) infects enterocytes requires quantification.

Genetic support for the role of the JAK-STAT pathway in driving ISC proliferation and supporting Nora virus replication is convincing. It would also be of interest to analyze other pathways implicated in ISC proliferation (e.g. JNK, EGFR), especially given the observations of Nigg et al, showing an involvement of STING/NF-kB and EGFR pathway in driving intestinal phenotypes of Drosophila A virus-infected flies (doi: 10.1016/j.cub.2024.05.009).

Figure 5E: An intriguing observation is that GFP:Dicer2 seems to be unstable in Nora virus-infected cells. Here, GFP control driven by the same driver line would be required to confidently conclude that this is due to an effect on Dicer-2 specifically.

Legends are mostly conclusive, and essential information about the experimental setup is missing in the captions of multiple figures, making the interpretation of the data difficult. See my private recommendations for suggestions to improve the data presentation.

Reviewer #3 (Public review):

Summary:

Franchet et al. sought to characterize the impact of Nora virus on host lifespan and sensitivity to a variety of infectious or stressful treatments. Through careful and rigorous analyses, they provide evidence that the Nora virus greatly impacts fly survival to infection, overall lifespan, and intestinal integrity. The authors have been thorough and rigorous, and the experimental evidence including proper isolation of the virus and Koch's Postulate reinoculation of the organism is excellent. The additional work is valuable and to the gold standard of the field, characterizing the pathology of the gut, including data showing gut leakage, the presence of the virus in the intestinal stem cells, and the importance of stem cell proliferation for virus replication and spread using elegant genetic tools to block stem cell proliferation or enterocyte death.

Strengths:

The authors have been rigorous and careful. The initial finding is presented through the lens of two related strains differing in virus infection. From there, the authors characterized the virus and isolated a purified culture, which they used to reinoculate a cleared strain to demonstrate proper Koch's Postulate satisfaction. The authors have also probed various parameters in terms of dietary importance in relevant conditions for many experiments. The additional work to characterize the pathology of the gut is compelling, using genetic tools to block or allow intestinal stem cell proliferation and enterocyte death through JAK-STAT and JNK signalling alongside the tracing of virus presence using a Nora virus antibody. JAK-STAT and JNK are previously described as regulators of these processes, making these tools appropriate and convincing. It is also interesting to see good evidence that the virus itself is damaging, rather than simply permitting coinfection by gut microbes (which does happen).

Weaknesses:

The claim that Dcr2 is not abundant in ISCs because the protein is not stable is logically consistent and reasonable. Perhaps I missed this, but the authors could additionally knock down or use somatic CRISPR to delete Dcr2 in ISCs to test whether a lack of Dcr2 underlies sensitivity. In this experiment, the expectation would be that depleting Dcr2 in ISCs genetically would make little difference to susceptibility overall compared to controls. This is not an essential experiment request.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation