Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorDominique Soldati-FavreUniversity of Geneva, Geneva, Switzerland
- Senior EditorDominique Soldati-FavreUniversity of Geneva, Geneva, Switzerland
Reviewer #1 (Public review):
Summary:
Bacterial species that frequently undergo horizontal gene transfer events tend to have genomes that approach linkage equilibrium, making it challenging to analyze population structure and establish the relationships between isolates. To overcome this problem, researchers have established several effective schemes for analyzing N. gonorrhoeae isolates, including MLST and NG-STAR. This report shows that Life Identification Number (LIN) Codes provide for a robust and improved discrimination between different N. gonorrhoeae isolates.
Strengths:
The description of the system is clear, the analysis is convincing, and the comparisons to other methods show the improvements offered by LIN Codes.
Weaknesses:
No major weaknesses were identified by this reviewer.
Reviewer #2 (Public review):
Summary:
This paper describes a new approach for analyzing genome sequences.
Strengths:
The work was performed with great rigor and provides much greater insights than earlier classification systems.
Weaknesses:
A minor weakness is that the clinical application of LIN coding could be articulated in a more in-depth way. The LIN coding system is very impressive and is certainly superior to other protocols. My recommendation, although not necessary for this paper, is that the authors expand their analysis to noncoding sequences, especially those upstream of open reading frames. In this respect, important cis-acting regulatory mutations that might help to further distinguish strains could be identified.
Reviewer #3 (Public review):
Summary:
In this well-written manuscript, Unitt and colleagues propose a new, hierarchical nomenclature system for the pathogen Neisseria gonorrhoeae. The proposed nomenclature addresses a longstanding problem in N. gonorrhoeae genomics, namely that the highly recombinant population complicates typing schemes based on only a few loci and that previous typing systems, even those based on the core genome, group strains at only one level of genomic divergence without a system for clustering sequence types together. In this work, the authors have revised the core genome MLST scheme for N. gonorrhoeae and devised life identification numbers (LIN) codes to describe the N. gonorrhoeae population structure.
Strengths:
The LIN codes proposed in this manuscript are congruent with previous typing methods for Neisseria gonorrhoeae, like cgMLST groups, Ng-STAR, and NG-MAST. Importantly, they improve upon many of these methods as the LIN codes are also congruent with the phylogeny and represent monophyletic lineages/sublineages.
The LIN code assignment has been implemented in PubMLST, allowing other researchers to assign LIN codes to new assemblies and put genomes of interest in context with global datasets.
Weaknesses:
The authors correctly highlight that cgMLST-based clusters can be fused due to "intermediate isolates" generated through processes like horizontal gene transfer. However, the LIN codes proposed here are also based on single linkage clustering of cgMLST at multiple levels. It is unclear if future recombination or sequencing of previously unsampled diversity within N. gonorrhoeae merges together higher-level clusters, and if so, how this will impact the stability of the nomenclature.
The authors have defined higher resolution thresholds for the LIN code scheme. However, they do not investigate how these levels correspond to previously identified transmission clusters from genomic epidemiology studies. It would be useful for future users of the scheme to know the relevant LIN code thresholds for these investigations.