Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorRio SugimuraThe University of Hong Kong, Pok Fu Lam, Hong Kong
- Senior EditorSofia AraújoUniversitat de Barcelona, Barcelona, Spain
Reviewer #1 (Public review):
Summary:
The authors aimed to develop a fully scalable, feeder-free protocol for deriving dorsal forebrain neural rosette stem cells (NRSCs) from human pluripotent stem cells, eliminating the need for manual rosette isolation. Using dynamic suspension culture combined with single-SMAD inhibition (RepSox), they sought to generate FOXG1⁺/OTX2⁺ NRSCs within ten days and expand them through at least twelve passages while retaining regional identity. They also aimed to demonstrate the cells' capacity to differentiate into functional neurons, astrocytes, and oligodendrocytes under defined conditions.
Strengths:
A key strength is the elimination of labour-intensive manual rosette picking, which significantly reduces operator variability and enhances throughput. The authors provide diverse validation in the form of flow cytometry showing >95% OTX2⁺ over passages 2-12, immunocytochemistry, single-cell RNA-seq, and functional MEA recordings, confirming both regional fidelity and neuronal activity. They also demonstrate glial differentiation and reproducibility across two hESC lines.
The results convincingly demonstrate that the RepSox/suspension approach yields high-purity dorsal forebrain neural progenitor cells (NRSCs) that maintain marker expression and multipotency through passage 12 and differentiate into electrophysiologically active neurons and mature glia. Thus, the authors have achieved their primary objectives.
This protocol addresses a significant bottleneck in neural stem cell production by providing a reproducible, high-throughput alternative that is well-suited to drug screening, disease modelling, and potential cell therapy manufacturing. Standardised, scalable NRSC banks will accelerate neurodevelopmental and neurodegenerative disorder studies, enable automated bioreactor workflows, and encourage the sharing of resources across academia and industry.
Weaknesses:
Weaknesses include a lack of direct comparison to conventional manual-selection protocols, and the need to improve the statistical rigor of all quantitative assays by applying appropriate hypothesis tests (e.g., t-tests or ANOVA with multiple-comparison correction) rather than reporting mean {plus minus} SD alone.
Additional Context:
Beyond the core technical advance, it's important to situate this work within the broader landscape of neural stem cell research and its downstream applications. Traditionally, dorsal forebrain NSCs have been generated via manual rosette picking after dual-SMAD inhibition (Chambers et al., 2009), a process that is labor-intensive, low-throughput, and prone to operator-dependent variability. By eliminating that step, this protocol directly addresses a key barrier to standardizing NSC production under GMP-compatible conditions - critical for both large-scale drug screening and eventual clinical use. Stable, regionally specified forebrain NSCs are especially valuable for modeling early neurodevelopmental disorders (e.g., autism spectrum disorders, microcephaly) and late-onset pathologies (e.g., Alzheimer's disease) in vitro, where precise cortical patterning is essential to recapitulate disease phenotypes. Moreover, establishing long-term epigenetic fidelity (e.g., via future ATAC-seq or histone-mark profiling) will further reassure users that transcriptional consistency reflects preserved regulatory networks, not just transient marker expression. Finally, demonstrating robust cryopreservation viability (>80%) makes these cells a readily shareable resource for the community, accelerating cross-lab reproducibility and comparative studies of patient-derived iPSC lines. This context underscores how scalable, high-purity forebrain NSCs can transform both basic neuroscience research and translational pipelines.
Reviewer #2 (Public review):
In the present manuscript, Dannulat Frazier et al. provide a novel and advanced protocol for obtaining almost pure populations of neural rosette stem cells (NRSCs) expressing the general markers NES and SOX2. These NSCs are expandable and exhibit dorsal forebrain properties and markers that are maintained throughout passages in culture (at least until passage 12). The authors also demonstrate the multipotency of these NSCs by their ability to differentiate into functional neurons, and precursors of astrocytes and oligodendrocytes.
This method does not require the usual step of manual rosette selection and allows a greater homogeneity of the NSCs obtained and the standardization of the protocol, which will allow greater advances in the applications of these NSCs in research and as models of disease or compound testing. The manuscript is of great interest for the research area, since it describes a new methodology that can facilitate the research and therapeutic application of NSCs.
The manuscript is well-written; the results are clear, robust, and well-explained. The conclusions reached in this paper are well-supported by the data, but some aspects could be better clarified.
(1) The results presented in the present manuscript of the NSCS are performed up to passage 12; it would be interesting to know up to which passages these cells can be expanded, maintaining their initial properties. Have the authors analyzed passages beyond 12?
(2) In Figure 2A, where different markers are shown in NSCs at different passages, it seems that at passage 12, there is a decrease in TJP1+ zones in relation to earlier passages, which could indicate a reduction in the potential to generate rosettes. Have the authors done any quantification along these lines? Could this be the case, or is it just an effect of the image chosen?
(3) In Figure 3A, it is very striking and intriguing that the decrease in the expression of the PAX6 gene in passage 8 in relation to passage 2, which does not correspond to what is observed at the protein level. Have the authors verified this result using another technique, such as for example RT-q-PCR?
(4) In Figure 5B, the labeling for GFAP, appears rather nuclear, despite being a cytoskeleton protein. How can the authors explain this?