Quantitative computerized analysis demonstrates strongly compartmentalized tissue deformation patterns underlying mammalian heart tube formation

  1. Cardiovascular Regeneration Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
  2. Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
  3. Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Robert Kelly
    Aix-Marseille Université, Marseille, France
  • Senior Editor
    Didier Stainier
    Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany

Reviewer #1 (Public review):

Summary:

The study by Raiola et al. conducted a quantitative analysis of tissue deformation during the formation of the primitive heart tube from the cardiac crescent in mouse embryos. Using the tools developed to analyze growth, anisotropy, strain, and cell fate from time-lapse imaging data of mouse embryos, the authors elucidated the compartmentalization of tissue deformation during heart tube formation and ventricular expansion. This paper describes how each region of the cardiac tissue changes to form the heart tube and ventricular chamber, contributing to our understanding of the earliest stages of cardiac development.

Strengths:

In order to understand tissue deformation in cardiac formation, it is commendable that the authors effectively utilized time-lapse imaging data, a data pipeline, and in silico fate mapping.

The study clarifies the compartmentalization of tissue deformation by integrating growth, anisotropy, and strain patterns in each region of the heart.

Weaknesses:

The significance of the compartmentalization of tissue deformation for the heart tube formation remains unclear.

Reviewer #2 (Public review):

The authors address an important challenge in developmental biology: the quantitative description of tissue deformation during organogenesis. They have developed a new pipeline to quantify early heart tube morphogenesis in the mouse, with cellular resolution. They adopt an elegant approach by integrating multiple 3D time-lapse datasets into a dynamic atlas of cardiac morphogenesis in order to compute spatio-temporal deformation patterns. The main findings highlight a strong compartmentalization of cell behaviors, with tissue growth and anisotropy exhibiting complementary and spatially segregated patterns. Using these data, the authors developed an in-silico fate mapping tool to interrogate cell displacement within the myocardium. This virtual model provides new mechanistic insights into how the bilateral cardiac primordia converge and transform into a three-dimensional heart tube. The authors identify "belt-like" constraints at the arterial and venous poles that prevent tissue expansion and thus shape the ventricular barrel morphology.

The computational framework is highly innovative and impressive, providing an unprecedented 3D model of tissue deformation during heart morphogenesis. It also opens avenues for testing hypotheses regarding tissue growth and the forces that cause cell motion. However, the proposed model of ventricular chamber formation with the two constraining belts remains hypothetical, lacking biological validation and requiring strengthening or modulation.

Overall, this carefully performed study provides a new model for exploring tissue deformation during organogenesis and will be of broad interest to computational and developmental biologists.

Reviewer #3 (Public review):

Summary:

The manuscript by Raiola and colleagues entitled "Quantitative computerized analysis demonstrates strongly compartmentalized tissue deformation patterns underlying mammalian heart tube formation" takes a highly quantitative approach to interrogating the earliest stages of cardiogenesis (12 hours, from early cardiac crescent to early heart tube) in a new and innovative way. The paper presents a new computational framework to help identify both regional and temporal patterns of tissue deformation at cellular resolution. The method is applied to live embryo imaging data (newly generated and from the group's previous pioneering work). In the initial setup, the new model was applied directly to raw time-lapse data, and the results were compared to actual cell tracks identified manually, showing close correlations of the model with the manual tracking. Next, they integrated spatial and temporal information from different embryos to generate a new model for tissue movement, driven by parameters such as tissue growth and anisotropy. Key findings from their model suggest that there are distinct compartments of tissue deformation patterns as the bilateral cardiac crescent develops into the linear heart tube, and that the ventricular chamber forms by a defined expansion pattern, as a 'hemi-barrel shape', with the aterial and venous poles (IFT and OFT) acting as the harnessing belts constraining the expansion of the chamber further. Lastly, the model is tested for its ability to predict future residence of cardiac crescent cells in the heart tube, which it seems to be able to do successfully based on fate tracking validation experiments.

Strengths:

The manuscript provides an exceptionally careful analysis of a critical stage during heart development - that of the earliest stages of morphogenesis, when the heart forms its first tube and chamber structures. While numerous studies have interrogated this stage of heart development, few studies have performed time-lapse imaging, and, to my knowledge, no other report has performed such in in-depth quantitative analysis and modeling of this complex process. The computational model applied to normal heart development of the myocardium (labelled by Nkx2-5) has revealed multiple new and interesting concepts, such as the distinct compartments of tissue deformation patterns and the growth trajectories of the emerging ventricle. The fact that the model operates at cellular resolution and over a nearly continuous time period of approximately 12 hours allows for unprecedented depth of the analysis in a largely unbiased manner. Going forward, one can imagine such models revealing additional information on these processes, performing analyses of subpopulations that form the heart, and maybe most importantly, applying the model to various perturbation models (genetic or otherwise). The manuscript is very well written, and the data display is accessible and transparent.

Weaknesses:

No major weaknesses are noted with the study. It would have been very exciting to see the model applied to any kind of perturbation, for example, a left-right defect model, or a model with compromised cardiac progenitor populations. However, the amount of live imaging required for such analyses renders this out of scope for the current study.

Author response:

We are going to modify the text following Reviewer’s comments and perform embryo direct labelling experiments to experimentally address the contraction of the two “belts” proposed in our model. We feel that this aspect is feasible in a reasonable time and important for the model proposed. We appreciate the relevance of using this framework to identify molecular drivers of the regionalized tissue behaviours uncovered and how these might be altered in mutant models, but feel that these aspects demand efforts beyond the the reasonable revision periods.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation