Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorStephan PlessUniversity of Copenhagen, Copenhagen, Denmark
- Senior EditorDavid RonUniversity of Cambridge, Cambridge, United Kingdom
Reviewer #1 (Public review):
Summary:
This paper describes experiments with alpha-synuclein (aS) with acetylated lysines (acK) at various positions. Their findings on how to use non-canonical amino acid (ncAA) mutagenesis to generate aS with acetylated lysines are valuable. The paper then continues with a range of experiments to characterise the acetylated alpha-synuclein constructs at different positions, with the aim of providing insights into which sites are relevant to disease or their function inside cells. The paper concludes these experiments with the suggestion that inhibiting the Zn2+-dependent histone deacetylase HDAC8 to potentially increase acetylation at lysine 80 may have therapeutic benefit. However, the relevance of most of these experiments is unclear, mainly as the filaments that form from these constructs are different from those observed in human disease (but see below for more details). Moreover, using the recombinantly produced acetylated versions of alpha-synuclein to normalise mass-spectrometry data, the authors themselves report that acetylation of alpha-synuclein does not differ between individuals with Parkinson's disease or healthy controls.
Strengths:
The authors report difficulties with chemical synthesis, and then decide to make these constructs using non-canonical amino acid (ncAA) mutagenesis, which seems to work reasonably well (yields vary somewhat). In the Conclusion section, the authors report that they used these recombinant proteins to obtain quantitative insights into the levels of acetylation of lysines in individuals with PD versus healthy controls, for which they find no significant differences. This part of the work is valuable.
Weaknesses:
The authors then use circular dichroism to show that aSyn with acK at position 43 has less alpha-helical content. From this result, they deduce that "only this site could potentially perturb aS function in neurotransmitter trafficking", but no experiments on neurotransmitter trafficking were performed.
Subsequently, they measure the aggregation speed of the variants in seeded aggregation experiments with preformed fibrils (PFFs) from WT aSyn, and conclude that acK at positions 12, 43, and 80 yields slower aggregation. They reach similar conclusions when measuring seeded aggregation in primary cultures. As far as I understand it, the seeding experiments in cells use seeds that are assembled from partially acetylated alpha-synuclein, but that are made of non-acetylated wildtype alpha-synuclein, and the alpha-synuclein that is endogenous in the cells is also non-acetylated (or at least not beyond what happens in these cells at endogenous levels). It is therefore unclear how the cellular seeding experiments relate to the in vitro aggregation assays with (partially) acetylated substrates. Anyway, both aggregation experiments ignore that the structures of aSyn filaments in Parkinson's disease (PD) or multiple system atrophy (MSA) are different from those formed in these experiments, and that, therefore, the observed aggregation kinetics are likely irrelevant for the speed with which disease-relevant filaments form in the brain.
NMR and FCS experiments show that acK at positions 12 and 43 may reduce binding to vesicles, which then leaves only acK80.
Finally, the authors describe the cryo-EM structure of mixtures of acK80:WT aSyn filaments, which are predominantly made of WT aSyn, with a previously described structure. Filaments made of only acK80 aSyn have a modified arrangement of this structure, where the now neutral side chain of residue 80 packs inside a hydrophobic pocket. The authors discuss differences between the acK80 structures and those of other structures from in vitro assembled aSyn filaments, none of which are the same as those observed from PD or MSA brains, nor are any attempts made to transfer observations from the in vitro experiments to the structures of disease. The relevance of the cryo-EM structures for human disease, therefore, remains unclear.
The Conclusion on p.20 mentions an interesting and valuable result: the authors used the acetylated recombinant proteins to determine the extent of acetylation within human protein samples by quantitative liquid chromatography MS (SI, Figures S41-S49). Their conclusion is that "The level of acetylation was variable - no clear trend was observed between healthy control and patients - nor between patients of different diseases (SI, Table S4, Supplementary Data 1)" This result implies that acetylation of aS is not directly related to its pathogenicity, which again adds doubts on the disease-relevance of the results described in the rest of the paper.
Reviewer #2 (Public review):
Summary:
Shimogawa et al. studied the effect of lysine acetylation at different sites in the alpha-synuclein (aS) sequence on the protein-membrane affinity, seeding capacity in the test tube and in cells, and on the structure of fibrils, using a range of biophysical methods. They use non-canonical amino acid (ncAA) mutagenesis to prepare aS lysine acetylated variant at different sites.
Strengths:
The major strength of this paper is the approach used for the production of site-specific lysine acetylated variants of aS using ncAA mutagenesis, as well as the combination of a range of biophysical methods together with cellular assays and structure biology to decipher the effect of lysine acetylation on aS-membrane binding, seeding propensity, and fibril structure. This approach allowed the author to find that lysine acetylation at positions 12, 43, and 80 led to lower seeding capacity of aS in the test tube and in cells, but only acetylation at lysine 80 did not affect aS-membrane interaction. These results suggest that lysine acetylation at position 80 may be protective against aggregation without perturbing the proposed functional role of aS in synaptic plasticity.
Weaknesses:
SDS is not a good membrane model to investigate the effect of lysine acetylation on aS membrane-binding because it is a harsh detergent and solubilizes membranes. Negatively charged vesicles or vesicles made of a mixture of lipids mimicking the lipid composition of synaptic vesicles are more accepted in the field to study aS-membrane interactions. The authors used such vesicles for the FCS experiments, and they could be used for the initial screening of the 12 lysine acetylated variants of aS.
It would help the reader to have the experimental details (e.g., buffer, protein/lipid concentrations) for the different assays written in the figure legend.
The authors use an assay consisting of mixing 10% fibrils + 90% monomer to investigate the effect of lysine acetylation on aS. However, the assay only probes fibril elongation and/or secondary processes. The current wording can be misleading, and the term aggregation could be replaced by seeding capacity for clarity. For example, the authors state that lysine acetylation at sites 12, 43, and 80 each inhibits aggregation, but this statement is not supported by the data. Instead, the data show that the acetylation at these sites slows down the fibril elongation and thus decreases the seeding capacity of aS fibrils. In order to state that lysine acetylation has an effect on aS aggregation, fibril formation, the author should use an assay where the de novo formation of fibrils is assessed, such as in the presence of lipid vesicles or under shaking conditions.
It is not clear from the EM data that the structures of the different lysine acetylated variants are different, unlike what is stated in the text.
Reviewer #3 (Public review):
Shimogawa et al. describe the generation of acetylated aSyn variants by genetic code expansion to elucidate effects on vesicle binding, aggregation, and seeding effects. The authors compared a semi-synthetic approach to obtain acetylated aSyn variants with genetic code expansion and concluded that the latter was more efficient in generating all 12 variants studied here, despite the low yields for some of them. Selected acetylated variants were used in advanced NMR, FCS, and cryo-EM experiments to elucidate structural and functional changes caused by acetylation of aSyn. Finally, site-specific differences in deacetylation by HDAC 8 were identified.
The study is of high scientific quality, andthe results are convincingly supported by the experimental data provided. The challenges the authors report regarding semi-synthetic access to aSyn are somewhat surprising, as this protein has been made by a variety of different semi-synthesis strategies in satisfactory yields and without similar problems being reported.
The role of PTMs such as acetylation in neurodegenerative diseases is of high relevance for the field, and a particular strength of this study is the use of authentic acetylated aSyn instead of acetylation-mimicking mutations. The finding that certain lysine acetylations can slow down aggregation even when present only at 10-25% of total aSyn is exciting and bears some potential for diagnostics and therapeutic intervention.