Kinesin-1 conformational dynamics are controlled by a cargo-sensitive TPR switch

  1. School of Biochemistry, University of Bristol, Bristol, United Kingdom
  2. School of Chemistry, University of Bristol, Bristol, United Kingdom
  3. School of Engineering Mathematics and Technology, University of Bristol, Bristol, United Kingdom
  4. Living Systems Institute, University of Exeter, Exeter, United Kingdom
  5. Department of Biosciences, University of Exeter, Exeter, United Kingdom
  6. GW4 Facility for High-Resolution Electron Cryo-Microscopy, University of Bristol, Bristol, United Kingdom
  7. Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, United Kingdom

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Julien Roche
    Iowa State University, Ames, United States of America
  • Senior Editor
    Amy Andreotti
    Iowa State University, Ames, United States of America

Reviewer #1 (Public review):

Summary:

The authors aim to interrogate the sets of intramolecular interactions that cause kinesin-1 hetero-tetramer autoinhibition and the mechanism by which cargo interactions via the light chain tetratricopeptide repeat domains can initiate motor activation. The molecular mechanisms of kinesin regulation remain an important question with respect to intracellular transport. It has implications for the accuracy and efficiency of motor transport by different motor families, for example, the direction of cargos towards one or other microtubules.

Strengths:

The authors focus on the response of inactivated kinesin-1 to peptides found in cargos and the cascade of conformational changes that occur. They also test the effects of the known activator of kinesin-1 - MAP7 - in the context of their model. The study benefits from multiple complementary methods - structural prediction using AlphaFold3, 2D and 3D analysis of (mainly negative stain) TEM images of several engineered kinesin constructs, biophysical characterisation of the complexes, peptide design, hydrogen/deuterium-exchange mass spectrometry, and simple cell-based imaging. Each set of experiments is thoughtfully designed, and the intrinsic limitations of each method are offset by other approaches such that the assembled data convincingly support the authors' conclusions. This study benefits from prior work by the authors on this system and the tools and constructs they previously accrued, as well as from other recent contributions to the field.

Weaknesses:

It is not always straightforward to follow the design logic of a particular set of experiments, with the result that the internal consistency of the data appears unconvincing in places. For example, i) the Figure 1 AlphaFold3 models do not include motor domains whereas the nearly all of the rest of the data involve constructs with the motor domains; ii) the kinesin constructs are chemically cross-linked prior to TEM sample preparation - this is clear in the Methods but should be included in the Results text, together with some discussion of how this might influence consistency with other methods where crosslinking was not used. Can those cross-links themselves be used to probe the intramolecular interactions in the molecular populations by mass spec? In general, the information content of some of the figure panels can also be improved with more annotations (e.g. angular relationship between views in Figure 1B, approximate interpretations of the various blobs in Fig 3F, and more thought given to what the reader should extract from the representative micrographs in several figures - inclusion of the raw data is welcome but extraction and magnification of exemplar particles (as is done more effectively in Fig S5) could convey more useful information elsewhere.

Reviewer #2 (Public review):

Summary:

In this paper, Shukla, Cross, Kish, and colleagues investigate how binding of a cargo-adaptor mimic (KinTag) to the TPR domains of the kinesin-1 light chain, or disruption of the TPR docking site (TDS) on the kinesin-1 heavy chain, triggers release of the TPR domains from the holoenzyme. This dislocation provides a plausible mechanism for transition out of the autoinhibited lambda-particle toward the open and active conformation of kinesin-1. Using a combination of negative-stain electron microscopy, AlphaFold modeling, biochemical assays, hydrogen-deuterium exchange mass spectrometry (HDX-MS), and other methods, the authors show how TPR undocking propagates conformational changes through the coiled-coil stalk to the motor domains, increasing their mobility and enhancing interactions with the microtubule-bound cofactor MAP7. Together, they propose a model in which the TDS on CC1 of the heavy chain forms a "shoulder" in the compact, autoinhibited state. Cargo-adaptor binding, mimicked here by KinTag, dislodges this shoulder, liberating the motor domains and promoting MAP7 association, driving kinesin-1 activation.

Strengths:

Throughout the study, the authors use a clever construct design - e.g., delta-Elbow, ElbowLock, CC-Di, and the high-affinity KinTag - to test specific mechanisms by directly perturbing structural contacts or affecting interactions. The proposed mechanism of releasing autoinhibition via adaptor-induced TPR undocking is also interrogated with a number of complementary techniques that converge on a convincing model for activation that can be further tested in future studies. The paper is well-written and easy to follow, though some more attention to figure labels and legends would improve the manuscript (detailed in recommendations for the authors).

Weaknesses:

These reflect limits of what the current data can establish rather than flaws in execution. It remains to be tested if the open state of kinesin-1 initiated by TPR undocking is indeed an active state of kinesin-1 capable of processive movement and/or cargo transport. It also remains to be determined what the mechanism of motor domain undocking from the autoinhibited conformation is, and perhaps this could have been explored more here. The authors have shown by HDX-MS that the motor domains become more mobile on KinTag binding, but perhaps molecular dynamics would also be useful for modelling how that might occur.

Reviewer #3 (Public review):

Summary:

The manuscript by Shukla and colleagues presents a comprehensive study that addresses a central question in kinesin-1 regulation - how cargo binding to the kinesin light chain (KLC) tetratricopeptide repeat (TPR) domains triggers activation of full-length kinesin-1 (KHC). The authors combine AlphaFold3 modeling, biophysical analysis (fluorescence polarization, hydrogen-deuterium exchange), and electron microscopy to derive a mechanistic model in which the KLC-TPR domains dock onto coiled-coil 1 (CC1) of the KHC to form the "TPR shoulder," stabilizing the autoinhibited (λ-particle) conformation. Binding of a W/Y-acidic cargo motif (KinTag) or deletion of the CC1 docking site (TDS) dislocates this shoulder, liberating the motor domains and enhancing accessibility to cofactors such as MAP7. The results link cargo recognition to allosteric structural transitions and present a unified model of kinesin-1 activation.

Strengths:

(1) The study addresses a fundamental and long-standing question in kinesin-1 regulation using a multidisciplinary approach that combines structural modeling, quantitative biophysics, and electron microscopy.

(2) The mechanistic model linking cargo-induced dislocation of the TPR shoulder to activation of the motor complex is well supported by both structural and biochemical evidence.

(3) The authors employ elegant protein-engineering strategies (e.g., ElbowLock and ΔTDS constructs) that enable direct testing of model predictions, providing clear mechanistic insight rather than purely correlative data.

(4) The data are internally consistent and align well with previous studies on kinesin-1 regulation and MAP7-mediated activation, strengthening the overall conclusion.

Weaknesses:

(1) While the EM and HDX-MS analyses are informative, the conformational heterogeneity of the complex limits structural resolution, making some aspects of the model (e.g., stoichiometry or symmetry of TPR docking) indirect rather than directly visualized.

(2) The dynamics of KLC-TPR docking and undocking remain incompletely defined; it is unclear whether both TPR domains engage CC1 simultaneously or in an alternating fashion.

(3) The interplay between cargo adaptors and MAP7 is discussed but not experimentally explored, leaving open questions about the sequence and exclusivity of their interactions with CC1.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation