Adaptation of an herbivorous arthropod to green tea plants by overcoming catechin defenses

  1. Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
  2. Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, United States
  3. Department of Chemistry and Biochemistry, University of South Carolina, Columbia, United States
  4. Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women’s University, Nara, Japan
  5. Department of Biology, The University of Western Ontario, London, Canada

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Youngsung Joo
    Seoul National University, Seoul, Republic of Korea
  • Senior Editor
    Sergio Rasmann
    University of Neuchâtel, Neuchâtel, Switzerland

Reviewer #1 (Public review):

Summary:

This study investigates the molecular mechanisms allowing the KSM mite to infest tea plants, a host that is toxic to the closely related TSSM mite due to high concentrations of phenolic catechins. The authors utilize a comparative approach involving tea-adapted KSM, non-adapted KSM, and TSSM to assess behavioral avoidance and physiological tolerance to catechins. The main finding is that tea-adapted KSM possesses a specific detoxification mechanism mediated by an enzyme, TkDOG15, which was acquired via horizontal gene transfer. The study demonstrates that adaptation is a two-step process: (1) structural refinement of the TkDOG15 enzyme through amino acid substitutions that enhance enzymatic efficiency against catechins, and (2) significant transcriptional upregulation of this gene in response to tea feeding. This enzymatic adaptation allows the mites to cleave and detoxify tea catechins, enabling survival on a toxic host plant.

Strengths:

A multiomics approach (transcriptomics and proteomics) provided a compelling cross-validation of its findings. Functional bioassays, such as RNAi and recombinant enzyme assays, demonstrated that the adapted mite has higher activity against catechins via TkDOG15. Other methodologies, like feeding assay using a parafilm-covered leaf disc, were effective in avoiding contact chemosensation.

Weaknesses:

Although TkDOG15 is assumed to "detoxify" catechins by ring cleavage, the study doesn't identify or characterize the breakdown metabolic products. If the metabolites are indeed non-toxic compared to the parent catechins, that would strengthen the detoxification hypothesis. Also, the transcriptomic and proteomic analyses identified other potential detoxification enzymes, such as CCEs, UGTs, and ABC (Supplementary Tables 3-1 & 3-2), which were also upregulated. The manuscript focuses almost exclusively on TkDOG15, potentially overlooking a multigenic adaptation mechanism, where these other enzymes might play synergistic roles, although it was mentioned in the discussion section.

Reviewer #2 (Public review):

Summary:

The fascinating topic of the host range of arthropods, including insects, and the detoxification of host secondary metabolites has been elucidated through studies of the host specificity of two closely related species. The discovery that key genes were acquired from fungi through horizontal gene transfer (HGT) is particularly significant.

Strengths:

(1) The discovery that the TkDOG15 enzyme, acquired through HGT from fungi, plays a key role in the detoxification of green tea catechins in the Kanzawa mite, revealing a new mechanism of plant-herbivore interactions, is highly encouraging.

(2) The verification of this finding through various experiments, including behavioral, toxicological, transcriptomic, and proteomic analyses, RNAi-based gene function analysis, and recombinant enzyme activity assays, is also highly commendable.

(3) By proposing a two-step model in which amino acid substitutions and expression regulation of a specific enzyme gene (TkDOG15) enable host adaptive evolution, this study contributes significantly to our understanding of the evolutionary mechanisms of speciation and plant defense overcoming.

Weaknesses:

While transcriptome/proteome analyses reported changes in the expression of other detoxification-related enzymes, including CCEs, UGTs, ABC transporters, DOG1, DOG4, and DOG7, it is regrettable that the contribution of each enzyme, including its interaction with TkDOG15 and the functional analysis of each enzyme within the overall catechin detoxification system, was not investigated.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation