Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorMichael EisenUniversity of California, Berkeley, Berkeley, United States of America
- Senior EditorMichael EisenUniversity of California, Berkeley, Berkeley, United States of America
Reviewer #1 (Public Review):
This work describes a novel high-throughput approach to diverse transgenesis which the authors have named TARDIS for Transgenic Arrays Resulting in Diversity of Integrated Sequences. The authors describe the general approach: the generation of a synthetic 'landing pad' for transgene insertion (as previously reported by this group) that has a split selection hygromycin resistance gene, meaning that only perfect integration with the insert confers resistance to the otherwise lethal hygromycin drug. The authors then demonstrate two possible applications of the technology: individually barcoded lineages for lineage tracing and transcriptional reporter lines generated by inserting multiple promoters. In both cases, the authors did a limited 'proof of concept' study including many important controls, showcasing the potential of the method. The conclusions for applications of this method in C. elegans are supported by the data and the authors discuss important observations and considerations. In the discussion, the discuss the potential application of the method beyond C. elegans, although this remains speculative at this point given that a nontrivial aspect of the success of the method in worms is the self-assembly of DNA into heritable extrachromosomal arrays (a feature that is absent in most other systems).
Reviewer #2 (Public Review):
This paper explores the possibility of integrating diverse and multiple DNA fragments in the genome taking advantage of plasmids in arrays, and CRISPR. Since the efficiency of integration in the genome is low, they, as others in the field, use selection markers to identify successful events of integration. The use of these selection markers is common and diverse, but they use a couple of distinct strategies of selection to:
- Introduce bar codes in the genome of individuals at one specific genomic site (gene for Hygromycin resistance with bar code in an intron with homology arms to complete a functional gene);
- Introduce promoters at two specific genomic landing pads downstream of fluorescent reporters.
The strengths of the study are the clever design of the selection markers, which enrich the collection of this type of markers. While the work is not methodologically novel - it adds to other recent studies, e.g. from Nonet, Mouridi et al., and Malaiwong et al, that use the integration of single and multiple/diverse DNA sequences in the C. elegans genome - it provides a protocol for doing so and tool to make it practical. A limited number of experiments using the method are presented here, and the real test of this method will be its use to address biological questions.