Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJos van der MeerRadboud University Medical Centre, Nijmegen, Netherlands
- Senior EditorDetlef WeigelMax Planck Institute for Biology Tübingen, Tübingen, Germany
Public Review:
In this article, a novel technique allowing the linking of viral transcription levels and progeny virion production is presented. Barcoded libraries of an H1N1 influenza virus (two genes were barcoded near the 3'end) were used to infect cells using an experimental approach ensuring that, in the low multiplicity of infection condition, each cell is infected by one virion and that nearly every virion has a unique barcode. This allows then, upon single-cell RNA sequencing and sequencing of the supernatants, to infer back the cells that were producing certain barcoded viruses. Assessing detection frequencies of barcodes in the single-cell sequencing and in the sequencing of the supernatants allows us to compare the levels of viral transcription and progeny virion production.
Observations that viral transcription levels are very heterogenous at the single-cell level are not novel, but reinforce those from previous studies. The major findings of this study are (i) progeny virion production is also very heterogenous, i.e., a few cells produce most of the progeny virions and (ii) there is a poor correlation between viral transcription levels and progeny virion production at the single-cell level.
Strengths:
The article is very well written, the experimental choices are very well justified and the methods are very detailed, allowing the possibility of reproducing the work performed in this study. The conclusions are very well supported by the data and the limitations of the study and how those might influence the conclusions are also clearly explained. In addition, several experimental caveats, such as PCR cross-overs in next-generation sequencing and cell multiplets in single-cell sequencing, were well accounted for, which is not always the case in studies using these techniques.
Weaknesses:
It seems that the results presented here are from one single experiment. How reproducible are the results?
As explained in the article, it is important that nearly every virion has a unique barcode. This was assessed by sequencing the barcodes in the virus libraries. Between 92% to 96% of the barcodes were unique. With this information, it should be possible to assess whether non-unique barcodes were detected in infected cells, and if yes, remove these from the downstream analysis.
It seems like all the information available in this very rich dataset was not fully exploited. For instance, Figure 5C suggests that cells missing the expression of one viral gene might still be able to produce progeny viruses. It would be interesting to have the information regarding which gene was not expressed in these cells.
The introduction and discussion are rather short and the article could benefit from expanding them. Additional speculations about viral or cellular factors (e.g. differences in innate immune responses, differences in cell division status) that might explain the observed heterogeneity, both at the viral transcription and viral progeny virus production levels, would be interesting.