The optimal clutch size revisited: separating individual quality from the costs of reproduction

  1. Ecology & Evolutionary Biology, School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Ashleigh Griffin
    University of Oxford, Oxford, United Kingdom
  • Senior Editor
    Christian Rutz
    University of St Andrews, St Andrews, United Kingdom

Reviewer #1 (Public Review):

This paper falls in a long tradition of studies on the costs of reproduction in birds and its contribution to understanding individual variation in life histories. Unfortunately, the meta-analyses only confirm what we know already, and the simulations based on the outcome of the meta-analysis have shortcomings that prevent the inferences on optimal clutch size, in contrast to the claims made in the paper.

There was no information that I could find on the effect sizes used in the meta-analyses other than a figure listing the species included. In fact, there is more information on studies that were not included. This made it impossible to evaluate the data-set. This is a serious omission, because it is not uncommon for there to be serious errors in meta-analysis data sets. Moreover, in the long run the main contribution of a meta-analysis is to build a data set that can be included in further studies.

The main finding of the meta-analysis of the brood size manipulation studies is that the survival costs of enlarging brood size are modest, as previously reported by Santos & Nakagawa on what I suspect to be mostly the same data set. The paper does a very poor job of critically discussing whether we should take this at face value or whether instead there may be short-comings in the general experimental approach. A major reason why survival cost estimates are barely significantly different from zero may well be that parents do not fully adjust their parental effort to the manipulated brood size, either because of time/energy constraints, because it is too costly and therefore not optimal, or because parents do not register increased offspring needs. Whatever the reason, as a consequence, there is usually a strong effect of brood size manipulation on offspring growth and thereby presumably their fitness prospects. In the simulations (Fig.4), the consequences of the survival costs of reproduction for optimal clutch size were investigated without considering brood size manipulation effects on the offspring. Effects on offspring are briefly acknowledged in the discussion, but otherwise ignored. Assuming that the survival costs of reproduction are indeed difficult to discern because the offspring bear the brunt of the increase in brood size, a simulation that ignores the latter effect is unlikely to yield any insight in optimal clutch size. It is not clear therefore what we learn from these calculations.

There are other reasons why brood size manipulations may not reveal the costs of reproduction animals would incur when opting for a larger brood size than they produced spontaneously themselves. Firstly, the manipulations do not affect the effort incurred in laying eggs (which also biases your comparison with natural variation in clutch size). Secondly, the studies by Boonekamp et al on Jackdaws found that while there was no effect of brood size manipulation on parental survival after one year of manipulation, there was a strong effect when the same individuals were manipulated in the same direction in multiple years. This could be taken to mean that costs are not immediate but delayed, explaining why single year manipulations generally show little effect on survival. It would also mean that most estimates of the fitness costs of manipulated brood size are not fit for purpose, because typically restricted to survival over a single year.

Details of how the analyses were carried out were opaque in places, but as I understood the analysis of the brood size manipulation studies, manipulation was coded as a covariate, with negative values for brood size reductions and positive values for brood size enlargements (and then variably scaled or not to control brood or clutch size). This approach implicitly assumes that the trade-off between current brood size (manipulation) and parental survival is linear, which contrasts with the general expectation that this trade-off is not linear. This assumption reduces the value of the analysis, and contrasts with the approach of Santos & Nakagawa.

The observational study selection is not complete and apparently no attempt was made to make it complete. This is a missed opportunity - it would be interesting to learn more about interspecific variation in the association between natural variation in clutch size and parental survival.

Reviewer #2 (Public Review):

I have read with great interest the manuscript entitled "The optimal clutch size revisited: separating individual quality from the costs of reproduction" by LA Winder and colleagues. The paper consists in a meta-analysis comparing survival rates from studies providing clutch sizes of species that are unmanipulated and from studies where the clutch sizes are manipulated, in order to better understand the effects of differences in individual quality and of the costs of reproduction. I find the idea of the manuscript very interesting. However, I am not sure the methodology used allows to reach the conclusions provided by the authors (mainly that there is no cost of reproduction, and that the entire variation in clutch size among individuals of a population is driven by "individual quality").

I write that I am not sure, because in its current form, the manuscript does not contain a single equation, making it impossible to assess. It would need at least a set of mathematical descriptions for the statistical analysis and for the mechanistic model that the authors infer from it.
The texts mixes concepts of individual vs population statistics, of within individual vs among-individuals measures, of allocation trade-offs and fitness trade-offs, etc ....which means it would also require a glossary of the definitions the authors use for these various terms, in order to be evaluated.

This problem is emphasised by the following sentence to be found in the discussion "The effect of birds having naturally larger clutches was significantly opposite to the result of increasing clutch size through brood manipulation". The "effect" is defined as the survival rate (see Fig 1). While it is relatively easy to intuitively understand what the "effect" is for the unmanipulated studies: the sensitivity of survival to clutch size at the population level, this should be mentioned and detailed in a formula. Moreover, the concept of effect size is not at all obvious for the manipulated ones (effect of the manipulation? or survival rate whatever the manipulation (then how could it measure a trade-off ?)? at the population level? at the individual level ?) despite a whole appendix dedicated to it. This absolutely needs to be described properly in the manuscript.

Despite the lack of information about the underlying mechanistic model tested and the statistical model used, my impression is still that the interpretation in the introduction and discussion is not granted by the outputs of the figures and tables. Let's use a model similar to that of (van Noordwijk and de Jong, 1986): imagine that the mechanism at the population level is
a.c_(i,q)+b.s_(i,q)=E_q
Where c_(i,q) are s_(i,q) are respectively the clutch size for individual i which is of quality q, and E_q is the level of "energy" that an individual of quality q has available during the given time-step (and a and b are constants turning the clutch size and survival rate into energy cost of reproduction and energy cost of survival, and there are both quite "high" so that an extra egg (c_(i,q) is increased by 1) at the current time-step, decreases s_(i,q) markedly (E_q is independent of the number of eggs produced), that is, we have strong individual costs of reproduction). Imagine now that the variance of c_(i,q) (when the population is not manipulated) among individuals of the same quality group, is very small (and therefore the variance of s_(i,q) is very small also) and that the expectation of both are proportional to E_q. Then, in the unmanipulated population, the variance in clutch size is mainly due to the variance in quality. And therefore, the larger the clutch size c_(i,q) the higher E_q, and the higher the survival s_(i,q).
In the manipulated populations however, because of the large a and b, an artificial increase in clutch size, for a given E_q, will lead to a lower survival s_(i,q). And the "effect size" at the population level may vary according to a,b and the variances mentioned above. In other words, the costs of reproduction may be strong, but be hidden by the data, when there is variance in quality; however there are actually strong costs of reproduction (so strong actually that they are deterministic and that the probability to survive is a direct function of the number of eggs produced)

Moreover, it seems to me that the costs of reproduction are a concept closely related to generation time. Looking beyond the individual allocative (and other individual components of the trade-off) cost of reproduction and towards a populational negative relationship between survival and reproduction, we have to consider the intra-population slow fast continuum (some types of individuals survive more and reproduce less (are slower) than other (which are faster)). This continuum is associated with a metric: the generation time. Some individuals will produce more eggs and survive less in a given time-period because this time-period corresponds to a higher ratio of their generation time (Gaillard and Yoccoz, 2003; Gaillard et al., 2005). It seems therefore important to me, to control for generation time and in general to account for the time-step used for each population studied when analysing costs of reproduction. The data used in this manuscript is not just clutch size and survival rates, but clutch size per year (or another time step) and annual (or other) survival rates.

Finally, it is important to relate any study of the costs of reproduction in a context of individual heterogeneity (in quality for instance), to the general problem of the detection of effects of individual differences on survival (see, e.g., Fay et al., 2021). Without an understanding of the very particular statistical behaviour of survival, associated to an event that by definition occurs only once per life history trajectory (by contrast to many other traits, even demographic, where the corresponding event (production of eggs for reproduction, for example) can be measured several times for a given individual during its life history trajectory).

References:
Fay, R. et al. (2021) 'Quantifying fixed individual heterogeneity in demographic parameters: Performance of correlated random effects for Bernoulli variables', Methods in Ecology and Evolution, 2021(August), pp. 1-14. doi: 10.1111/2041-210x.13728.
Gaillard, J.-M. et al. (2005) 'Generation time: a reliable metric to measure life-history variation among mammalian populations.', The American naturalist, 166(1), pp. 119-123; discussion 124-128. doi: 10.1086/430330.
Gaillard, J.-M. and Yoccoz, N. G. (2003) 'Temporal Variation in Survival of Mammals: a Case of Environmental Canalization?', Ecology, 84(12), pp. 3294-3306. doi: 10.1890/02-0409.
van Noordwijk, A. J. and de Jong, G. (1986) 'Acquisition and Allocation of Resources: Their Influence on Variation in Life History Tactics', American Naturalist, p. 137. doi: 10.1086/284547.

Reviewer #3 (Public Review):

The authors present here a comparative meta-analysis analysis designed to detect evidence for a reproduction/ survival trade-off, central to expectations from life history theory. They present variation in clutch size within species as an observation in conflict with expectations of optimisation of clutch size and suggest that this may be accounted for from weak selection on clutch size. The results of their analyses support this explanation - they found little evidence of a reproduction - survival trade-off across birds. They extrapolated from this result to show in a mathematical model that the fitness consequences of enlarged clutch sizes would only be expected to have a significant effect on fitness in extreme cases, outside of normal species' clutch size ranges. Given the centrality of the reproduction-survival trade-off, the authors suggest that this result should encourage us to take a more cautious approach to applying concepts the trade-off in life history theory and optimisation in behavioural ecology more generally. While many of the findings are interesting, I don't think the argument for a major re-think of life history theory and the role of trade-offs in fitness maximisation is justified.

The interest of the paper, for me, comes from highlighting the complexities of the link between clutch size and fitness, and the challenges facing biologists who want to detect evidence for life history trade-offs. Their results highlight apparently contradictory results from observational and experimental studies on the reproduction-survival trade-off and show that species with smaller clutch sizes are under stronger selection to limit clutch size.

Unfortunately, the authors interpret the failure to detect a life history trade-off as evidence that there isn't one. The construction of a mathematical model based on this interpretation serves to give this possible conclusion perhaps more weight than is merited on the basis of the results, of this necessarily quite simple, meta-analysis. There are several potential complicating factors that could explain the lack of detection of a trade-off in these studies, which are mentioned and dismissed as unimportant (lines 248-250) without any helpful, rigorous discussion. I list below just a selection of complexities which perhaps deserve more careful consideration by the authors to help readers understand the implications of their results:

• Reproductive output is optimised for lifetime reproductive success and so the consequences of being pushed off the optimum for one breeding attempt are not necessarily detectable in survival but in future reproductive success (and, therefore, lifetime reproductive success).
• The analyses include some species that hatch broods simultaneously and some that hatch sequentially (although this information is not explicitly provided (see below)). This is potentially relevant because species which have been favoured by selection to set up a size asymmetry among their broods often don't even try to raise their whole broods but only feed the biggest chicks until they are sated; any added chicks face a high probability of starvation. The first point this observation raises is that the expectation of more chicks= more cost, doesn't hold for all species. The second more general point is that the very existence of the sequential hatching strategy to produce size asymmetry in a brood is very difficult to explain if you reject the notion of a trade-off.
• For your standard, pair-breeding passerine, there is an expectation that costs of raising chicks will increase linearly with clutch size. Each chick requires X feeding visits to reach the required fledge weight. But this is not the case for species which lay precocious chicks which are relatively independent and able to feed themselves straight after hatching - so again the relationship of care and survival is unlikely to be detectable by looking at the effect of clutch size but again, it doesn't mean there isn't a trade-off between breeding and survival.
• The costs of raising a brood to adulthood for your standard pair-breeding passerine is bound to be extreme, simply by dint of the energy expenditure required. In fact, it was shown that the basal metabolic rate of breeding passerines was at the very edge of what is physiologically possible, the human equivalent being cycling the Tour de France (Nagy et al. 1990). If birds are at the very edge of what is physiologically possible, is it likely that clutch size is under weak selection?
• Variation in clutch size is presented by the authors as inconsistent with the assumption that birds are under selection to lay the Lack clutch. Of course, this is absurd and makes me think that I have misunderstood the authors' intended point here. At any rate, the paper would benefit from more clarity about how variable clutch size has to be before it becomes a problem for optimality in the authors' view (lines 84-85; line 246). See Perrins (1965) for an exquisite example of how beautifully great tits optimise clutch size on average, despite laying between 5-12 eggs.

[Editors’ note: the authors had already made data files publicly available, available here, https://doi.org/10.5061/dryad.q83bk3jnk.]

Author Response

Reviewer #1 (Public Review):

This paper falls in a long tradition of studies on the costs of reproduction in birds and its contribution to understanding individual variation in life histories. Unfortunately, the meta-analyses only confirm what we know already, and the simulations based on the outcome of the meta-analysis have shortcomings that prevent the inferences on optimal clutch size, in contrast to the claims made in the paper.

There was no information that I could find on the effect sizes used in the meta-analyses other than a figure listing the species included. In fact, there is more information on studies that were not included. This made it impossible to evaluate the data-set. This is a serious omission, because it is not uncommon for there to be serious errors in meta-analysis data sets. Moreover, in the long run the main contribution of a meta-analysis is to build a data set that can be included in further studies.

It is disappointing that two referees comment on data availability, as we supplied a link to our full dataset and the code we used in Dryad with our submitted manuscript. We were also asked to supply our data during the review process and we again supplied a link to our dataset and code, along with a folder containing the data and code itself. We received confirmation that the reviewers had been given our data and code. We support open science and it was our intention that our dataset should be fully available to reviewers and readers. Our data and code are at https://doi.org/10.5061/dryad.q83bk3jnk.

The main finding of the meta-analysis of the brood size manipulation studies is that the survival costs of enlarging brood size are modest, as previously reported by Santos & Nakagawa on what I suspect to be mostly the same data set.

We disagree that the main finding of our paper is the small survival cost of manipulated brood size. The major finding of the paper, in our opinion, is that the effect sizes for experimental and observational studies are in opposite directions, therefore providing the first quantitative evidence to support the influential theoretical framework put forward by van Noordwijk and de Jong (1986), that individuals differ in their optimal clutch size and are constrained to reproducing at this level due to a trade-off with survival. We show that while the manipulation experiments have been widely accepted to be informative, they are not in fact an effective test of whether within-species variation in clutch size is the result of a trade-off between reproduction and survival.

The comment that we are reporting the same finding as Santos & Nakagawa (2012) is a misrepresentation of both that study and our own. Santos & Nakagawa found an effect of parental effort on survival only in males who had their clutch size increased – but no effect for males who had their clutch size reduced and no survival effect on females for either increasing or reducing parental effort. However, we found an overall reduction in survival for birds who had brood sizes manipulated to make them larger (for both sexes and mixed sex studies combined). In our supplementary information, we demonstrate the overall survival effect of a change in reproductive effort to be close to zero for males, negative (though non-significant) for females and significantly negative for mixed sexes (which are not included in the Santos & Nakagawa study).

The paper does a very poor job of critically discussing whether we should take this at face value or whether instead there may be short-comings in the general experimental approach. A major reason why survival cost estimates are barely significantly different from zero may well be that parents do not fully adjust their parental effort to the manipulated brood size, either because of time/energy constraints, because it is too costly and therefore not optimal, or because parents do not register increased offspring needs. Whatever the reason, as a consequence, there is usually a strong effect of brood size manipulation on offspring growth and thereby presumably their fitness prospects. In the simulations (Fig.4), the consequences of the survival costs of reproduction for optimal clutch size were investigated without considering brood size manipulation effects on the offspring. Effects on offspring are briefly acknowledged in the discussion, but otherwise ignored. Assuming that the survival costs of reproduction are indeed difficult to discern because the offspring bear the brunt of the increase in brood size, a simulation that ignores the latter effect is unlikely to yield any insight in optimal clutch size. It is not clear therefore what we learn from these calculations.

The reviewer’s comment is somewhat of a paradox. We take the best studied example of the trade-off between reproductive effort and parental survival, a key theme in life-history and the biology of ageing, and subject this to a meta-analysis. The reviewer suggests we should interpret our finding as if there must be something wrong with the method or studies we included, rather than maybe considering the original hypothesis could be false or inflated in importance. The reviewer’s inclination to question the premise of the data in favor of a held hypothesis we consider not necessarily the best scientific approach here. In many places in our manuscript do we question and address issues in the underlying data and interpretation (L101-105, L149-150, 182-185 and L229-233). Moreover, we make it clear that we focus on the trade-off between current reproductive effort and subsequent parental survival and we are aware that other trade-offs could counter-balance or explain our findings, discussed on L189-191 & L246-253. Note that it is also problematic, when you do not find the expected response, to search for an alternative that has not been measured. In the case here, with trade-offs, there are endless possiblilities of where a trade-off might be incurred between traits. We purposfully focus on the one well-studied and theorised trade-off. We clearly acknowledge though that when all possible trade-offs are taken into account a trade-off on the fitness level can occur and cite two famous studies (Daan et al., 1990 and Verhulst & Tinbergen 1991) that have done just that (L250-253).

So whilst, we agree with the reviewer that the offspring may incur costs themselves, rather than costs being incurred by the parents, the aim of our study was to test for a generalised trend across species in the survival costs of reproductive effort. It is unrealistic to suggest that incorporating offspring growth into our simulations would add insight, as a change in offspring number rarely affects all offspring in the nest equally and there can even be quite stark differences; for example this will be most evident in species that produce sacrificial offspring. This effect will be further confounded by catch-up growth, for example, and so it is likely that increased sibling competition from added chicks alters offspring growth trajectories, rather than absolute growth as the reviewer suggests. There are mixed results in the literature on the effect of altering clutch size on offspring survival, with an increased clutch size through manipulation often increasing the number of recruits from a nest.

There are other reasons why brood size manipulations may not reveal the costs of reproduction animals would incur when opting for a larger brood size than they produced spontaneously themselves. Firstly, the manipulations do not affect the effort incurred in laying eggs (which also biases your comparison with natural variation in clutch size). Secondly, the studies by Boonekamp et al on Jackdaws found that while there was no effect of brood size manipulation on parental survival after one year of manipulation, there was a strong effect when the same individuals were manipulated in the same direction in multiple years. This could be taken to mean that costs are not immediate but delayed, explaining why single year manipulations generally show little effect on survival. It would also mean that most estimates of the fitness costs of manipulated brood size are not fit for purpose, because typically restricted to survival over a single year.

First, our results did show a survival cost of reproduction for brood manipulations. We agree that there could be longer-term costs, and so our estimate of the survival cost for manipulated birds is likely to be an underestimate, meaning that our interpretation still holds – the cost to reproduce prevents individuals from laying beyond their optimal level. Note, however, that much theory is build on the immediate costs of reproduction and as such these costs are likely overinterpreted.

We agree with the reviewer that lifetime manipulations could be even more informative than single-year manipulations. Unfortunately, there are currently too few studies available to be able to draw generalisable conclusions across species for lifetime manipulations. This is, however, the reason we used lifetime change in clutch size in our fitness projections, which the reviewer seems to have missed – please see methods line 360-362, where we explicitly state that this is lifetime enlargement. Of course such interpretations do not include an accumulation of costs that is greater than the annual cost, but currently there is no clear evidence that such an assumption is valid. Such a conclusion can also not be drawn from the study on jackdaws by Boonekamp et al (2014) as the treatments were life-long and, therefore, cannot separate annual from accrued (multiplicative) costs that are more than the sum of annual costs incurred.

Details of how the analyses were carried out were opaque in places, but as I understood the analysis of the brood size manipulation studies, manipulation was coded as a covariate, with negative values for brood size reductions and positive values for brood size enlargements (and then variably scaled or not to control brood or clutch size). This approach implicitly assumes that the trade-off between current brood size (manipulation) and parental survival is linear, which contrasts with the general expectation that this trade-off is not linear. This assumption reduces the value of the analysis, and contrasts with the approach of Santos & Nakagawa.

We thank the reviewer for highlighting a lack of clarity in places in our methods. We will add additional detail to this section in our revised manuscript.

For clarity in our response, each effect size was extracted by performing a logistic regression with survival as a binary response variable and clutch size was the absolute value of offspring in the nest (i.e., for a bird who laid a clutch size of 5 but was manipulated to have -1 egg, we used a clutch size value of 4). The clutch size was also standardised and, separately, expressed as a proportion of the species mean.

We disagree that our approach reduces the value of our analysis. First, our approach allows a direct comparison between experimental and observational studies, which is the novelty of our study. Our approach does differ from Santos & Nakagawa but we disagree that it contrasts. Our approach allows us to take into consideration the severity of the change in clutch size, which Santos & Nakagawa do not. Therefore, we do not agree that our approach is worse at accounting for non-linearity of trade-offs than the approach used by Santos & Nakagawa.

Our analysis, alongside a plethora of other ecological studies, does assume that the response to our predictor variable is linear. However, it is common knowledge that there are very few (if any) truly linear relationships. We use linear relationships because they serve a good approximation of the trend and provide a more rigorous test for an underlying relationship than would fitting nonlinear models. For many datasets there is not a range of chicks added for which a non-linear relationship could be estimated. The question also remains of what the shape of this non-linear relationship should be and is hard to determine a priori. We will address non-linear effects in our revised manuscript.

The observational study selection is not complete and apparently no attempt was made to make it complete. This is a missed opportunity - it would be interesting to learn more about interspecific variation in the association between natural variation in clutch size and parental survival.

We clearly state in our manuscript that we deliberately made a tailored selection of studies that matched the manipulation studies (L279-282). We paired species extracted for observational studies with those extracted in experimental studies to facilitate a direct comparison between observational and experimental studies, and to ensure that the respective datasets were comparable. The reviewer’s focus in this review seems to be solely on the experimental dataset. This comment dismisses the observational component of our analysis and thereby fails to acknowledge the question being addressed in this study.

Reviewer #2 (Public Review):

I have read with great interest the manuscript entitled "The optimal clutch size revisited: separating individual quality from the costs of reproduction" by LA Winder and colleagues. The paper consists in a meta-analysis comparing survival rates from studies providing clutch sizes of species that are unmanipulated and from studies where the clutch sizes are manipulated, in order to better understand the effects of differences in individual quality and of the costs of reproduction. I find the idea of the manuscript very interesting. However, I am not sure the methodology used allows to reach the conclusions provided by the authors (mainly that there is no cost of reproduction, and that the entire variation in clutch size among individuals of a population is driven by "individual quality").

We would like to highlight that we do not conclude that there is no cost of reproduction. Please see lines 258–260, where we state that our lack of evidence for trade-offs driving within-species variation in clutch size does not necessarily mean the costs of reproduction are non-existent. We conclude that individuals are constrained to their optima by the survival cost of reproduction. It is also an over-statement of our conclusion to say that we believe that variation in clutch size is only driven by quality. Our results show that unmanipulated birds who have larger clutch sizes also live longer, and we suggest this is evidence that some individuals are “better” than others, but we do not say, nor imply, that no other factors affect variation in clutch size.

I write that I am not sure, because in its current form, the manuscript does not contain a single equation, making it impossible to assess. It would need at least a set of mathematical descriptions for the statistical analysis and for the mechanistic model that the authors infer from it.

We appreciate this comment, but this is the first time we have been asked to put equations in a manuscript rather than explain them in terms that are accessible to a wider audience. Note however that our meta-analysis is standard and based on logistic regression and standard meta-analytic practices. We do not think we need to repeat such equations and we cite the relevant data. For the simulation, we simply simulated the resulting effects and this is not something that we feel is captured more accurately in equations rather than in text and the associated graphs. We of course supplied our code for this along with our manuscript (https://doi.org/10.5061/dryad.q83bk3jnk), though as we mentioned above, we believe this was not shared with the reviewers despite us making this available for the review process. We therefore understand the reviewer feels the simulations were not explained thoroughly. We will revise our text to see if we can add additional explanation where relevant in our revision.

The texts mixes concepts of individual vs population statistics, of within individual vs among-individuals measures, of allocation trade-offs and fitness trade-offs, etc ....which means it would also require a glossary of the definitions the authors use for these various terms, in order to be evaluated.

We would like to thank the reviewer for highlighting this lack of clarity in our text. We will simplify the terminology and define terms in our revised manuscript.

This problem is emphasised by the following sentence to be found in the discussion "The effect of birds having naturally larger clutches was significantly opposite to the result of increasing clutch size through brood manipulation". The "effect" is defined as the survival rate (see Fig 1). While it is relatively easy to intuitively understand what the "effect" is for the unmanipulated studies: the sensitivity of survival to clutch size at the population level, this should be mentioned and detailed in a formula. Moreover, the concept of effect size is not at all obvious for the manipulated ones (effect of the manipulation? or survival rate whatever the manipulation (then how could it measure a trade-off ?)? at the population level? at the individual level ?) despite a whole appendix dedicated to it. This absolutely needs to be described properly in the manuscript.

We would like to thank the reviewer for bringing to our attention the lack of clarity on the details of our methodology. We will make this more clear in our revised manuscript.

For clarity, the effect size for both manipulated and unmanipulated nests was survival, given the brood size raised. We performed a logistic regression with survival as a binary response variable (i.e., number of individuals that survived and number of individuals that died after each breeding season), and clutch size was the absolute value of offspring in the nest (i.e., for a bird who laid a clutch size of 5 but was manipulated to have -1 egg, we used a clutch size value of 4). This allows for direct comparison of the effect size (survival given clutch size raised) between manipulated and unmanipulated birds.

Despite the lack of information about the underlying mechanistic model tested and the statistical model used, my impression is still that the interpretation in the introduction and discussion is not granted by the outputs of the figures and tables. Let's use a model similar to that of (van Noordwijk and de Jong, 1986): imagine that the mechanism at the population level is

a.c_(i,q)+b.s_(i,q)=E_q

Where c_(i,q) are s_(i,q) are respectively the clutch size for individual i which is of quality q, and E_q is the level of "energy" that an individual of quality q has available during the given time-step (and a and b are constants turning the clutch size and survival rate into energy cost of reproduction and energy cost of survival, and there are both quite "high" so that an extra egg (c_(i,q) is increased by 1) at the current time-step, decreases s_(i,q) markedly (E_q is independent of the number of eggs produced), that is, we have strong individual costs of reproduction). Imagine now that the variance of c_(i,q) (when the population is not manipulated) among individuals of the same quality group, is very small (and therefore the variance of s_(i,q) is very small also) and that the expectation of both are proportional to E_q. Then, in the unmanipulated population, the variance in clutch size is mainly due to the variance in quality. And therefore, the larger the clutch size c_(i,q) the higher E_q, and the higher the survival s_(i,q).

In the manipulated populations however, because of the large a and b, an artificial increase in clutch size, for a given E_q, will lead to a lower survival s_(i,q). And the "effect size" at the population level may vary according to a,b and the variances mentioned above. In other words, the costs of reproduction may be strong, but be hidden by the data, when there is variance in quality; however there are actually strong costs of reproduction (so strong actually that they are deterministic and that the probability to survive is a direct function of the number of eggs produced)

We would like to thank the reviewer for these comments. Please note that our simulations only take the experimental effect of brood size on parental survival into account. Our model does not incorporate quality effects. The reviewer is right that the relationship between quality and the effects exposed by manipulating brood size can take many forms and this is a very interesting topic, but not one we aimed to tackle in our manuscript. In terms of quality we make two points: 1) overall quality effects connecting reproduction and parental survival are present 2) these effects are opposite in direction to the effects when reproduction is manipulated and similar in magnitude. We do not go further than that in interpreting our results. The reviewer is right however that we do suggest and repeat suggestions by others that quality can also mask the trade-off in some individuals or circumstances (L63-65, L85-88 & L237-240), but we do not quantify this as this is dependent on the unknown relationships between quality and the response to the manipulation. A focussed set of experiments in that context would be interesting and there is some data that could get at this, i.e. the relationship between produced clutch size and the relative effect of the manipulation. Such information is however not available for all studies and although we explored also analyzing this, currently this is not possible to do with sufficient confidence. We will include this rationale in our revision.

Moreover, it seems to me that the costs of reproduction are a concept closely related to generation time. Looking beyond the individual allocative (and other individual components of the trade-off) cost of reproduction and towards a populational negative relationship between survival and reproduction, we have to consider the intra-population slow fast continuum (some types of individuals survive more and reproduce less (are slower) than other (which are faster)). This continuum is associated with a metric: the generation time. Some individuals will produce more eggs and survive less in a given time-period because this time-period corresponds to a higher ratio of their generation time (Gaillard and Yoccoz, 2003; Gaillard et al., 2005). It seems therefore important to me, to control for generation time and in general to account for the time-step used for each population studied when analysing costs of reproduction. The data used in this manuscript is not just clutch size and survival rates, but clutch size per year (or another time step) and annual (or other) survival rates.

The reviewer is right that this is interesting. There has been unexplained difference in temperate (seasonal) and tropical reproduction strategies. Most of our data come from seasonal breeders however. Although there is some variation in second brooding and such often these species only produce one brood. We do agree that a wider consideration here is relevant, but we are not trying to explain all of life-history in our paper. It is clearly the case that other factors will operate and the opportunity for trade-offs will vary among species according to their respective life histories. However, our study focuses on the two most fundamental components of fitness – longevity and reproduction – to test a major hypothesis in the field, and we uncover new relationships that contrast with previous influential studies, and cast doubt on previous conclusions. We question the assumed trade-off between reproduction and annual survival. We show quality is important and that the effect we find in experimental studies, is so small that it can only explain between-species patterns but is unlikely to be the selective force that constrains reproduction within-species. We do agree that there is a lot more work that can be done in this area. We hope we contribute to this, by questioning this central trade-off. We will try and incorporate some of these suggestions in the revision where possible.

Finally, it is important to relate any study of the costs of reproduction in a context of individual heterogeneity (in quality for instance), to the general problem of the detection of effects of individual differences on survival (see, e.g., Fay et al., 2021). Without an understanding of the very particular statistical behaviour of survival, associated to an event that by definition occurs only once per life history trajectory (by contrast to many other traits, even demographic, where the corresponding event (production of eggs for reproduction, for example) can be measured several times for a given individual during its life history trajectory).

Thank you for raising this point. The reviewer is right that heterogeneity can dampen or augment selection. Note that by estimating the effect of quality here we give an example of how heterogeneity can possibly do exactly this. We thank the reviewer for raising that we should possibly link this to wider effects of heterogeneity and we aim to do so in the revision.

References:

Fay, R. et al. (2021) 'Quantifying fixed individual heterogeneity in demographic parameters: Performance of correlated random effects for Bernoulli variables', Methods in Ecology and Evolution, 2021(August), pp. 1-14. doi: 10.1111/2041-210x.13728.

Gaillard, J.-M. et al. (2005) 'Generation time: a reliable metric to measure life-history variation among mammalian populations.', The American naturalist, 166(1), pp. 119-123; discussion 124-128. doi: 10.1086/430330.

Gaillard, J.-M. and Yoccoz, N. G. (2003) 'Temporal Variation in Survival of Mammals: a Case of Environmental Canalization?', Ecology, 84(12), pp. 3294-3306. doi: 10.1890/02-0409.

van Noordwijk, A. J. and de Jong, G. (1986) 'Acquisition and Allocation of Resources: Their Influence on Variation in Life History Tactics', American Naturalist, p. 137. doi: 10.1086/284547.

Reviewer #3 (Public Review):

The authors present here a comparative meta-analysis analysis designed to detect evidence for a reproduction/ survival trade-off, central to expectations from life history theory. They present variation in clutch size within species as an observation in conflict with expectations of optimisation of clutch size and suggest that this may be accounted for from weak selection on clutch size. The results of their analyses support this explanation - they found little evidence of a reproduction - survival trade-off across birds. They extrapolated from this result to show in a mathematical model that the fitness consequences of enlarged clutch sizes would only be expected to have a significant effect on fitness in extreme cases, outside of normal species' clutch size ranges. Given the centrality of the reproduction-survival trade-off, the authors suggest that this result should encourage us to take a more cautious approach to applying concepts the trade-off in life history theory and optimisation in behavioural ecology more generally. While many of the findings are interesting, I don't think the argument for a major re-think of life history theory and the role of trade-offs in fitness maximisation is justified.

The interest of the paper, for me, comes from highlighting the complexities of the link between clutch size and fitness, and the challenges facing biologists who want to detect evidence for life history trade-offs. Their results highlight apparently contradictory results from observational and experimental studies on the reproduction-survival trade-off and show that species with smaller clutch sizes are under stronger selection to limit clutch size.

Unfortunately, the authors interpret the failure to detect a life history trade-off as evidence that there isn't one. The construction of a mathematical model based on this interpretation serves to give this possible conclusion perhaps more weight than is merited on the basis of the results, of this necessarily quite simple, meta-analysis. There are several potential complicating factors that could explain the lack of detection of a trade-off in these studies, which are mentioned and dismissed as unimportant (lines 248-250) without any helpful, rigorous discussion. I list below just a selection of complexities which perhaps deserve more careful consideration by the authors to help readers understand the implications of their results:

We would like to thank the reviewer for their thoughtful response and summary of the findings we also agree are central to our study. The reviewer also highlights areas where our manuscript could benefit from a deeper discussion and we will add detail to our discussion in our revised manuscript.

We would like to highlight that we do not interpret the failure to detect a trade-off as evidence that there isn’t one. First, and importantly, we do find a trade-off but show this is only incurred when individuals lay beyond their optimal level. Secondly, we also state on lines 258-260 that the lack of evidence to support trade-offs being strong enough to drive variation in clutch size does not necessarily mean there are no costs of reproduction.

The statement that we have constructed a mathematical model based on the interpretation that we have not found a trade-off is, again, factually incorrect. We ran these simulations because the opposite is true – we did find a trade-off. There is a significant effect of clutch size when manipulated on annual parental survival. To appreciate whether this effect alone can explain why reproduction is constrained, we ran the simulations. From these simulations we find that this effect size is too small to explain the constraint so something else must be going on and we do spend a considerable amount of text discussing the possible explanations (L182-194). Note the possibly most parsimonious conclusion here is that costs of reproduction are not there so we also give that explanation some thought (L201-205 and L247-253).

We are disappointed by the suggestion that we have dismissed complicating factors which could prevent detection of a trade-off, as this was not our intention. We were aiming to highlight that what we have demonstrated to be an apparent trade-off can be explained through other mechanisms, and that the trade-off between clutch size and survival is not as strong in driving within-species variation in clutch size as previously assumed. We will add further discussion to our revised manuscript to make this clear and give readers a better understanding of the complexity of factors associated with life-history theory. Although we do feel we have addressed this (L248-255).

• Reproductive output is optimised for lifetime reproductive success and so the consequences of being pushed off the optimum for one breeding attempt are not necessarily detectable in survival but in future reproductive success (and, therefore, lifetime reproductive success).

We agree this is a valid point, which is mentioned in our manuscript in terms of alternative stages where the costs of reproduction might be manifested (L248-250). We would also like to highlight that in our simulations, the change in clutch size (and subsequent survival cost) was assumed for the lifetime of the individual, for this very reason.

• The analyses include some species that hatch broods simultaneously and some that hatch sequentially (although this information is not explicitly provided (see below)). This is potentially relevant because species which have been favoured by selection to set up a size asymmetry among their broods often don't even try to raise their whole broods but only feed the biggest chicks until they are sated; any added chicks face a high probability of starvation. The first point this observation raises is that the expectation of more chicks= more cost, doesn't hold for all species. The second more general point is that the very existence of the sequential hatching strategy to produce size asymmetry in a brood is very difficult to explain if you reject the notion of a trade-off.

We agree with the reviewer that the costs of reproduction can be absorbed by the offspring themselves, and may not be equal across offspring (we also highlight this at L249 in the manuscript). However, we disagree that for some species the addition of more chicks does not equate to an increase in cost, though we do accept this might be less for some species. This is, however, difficult to incorporate into a sensible model as the impacts will vary among species and some species do also exhibit catch-up growth. So without a priori knowledge on this we kept our model simple. To test whether the effect on parental survival (often assumed to be a strong cost) can explain the constraint on reproductive effort, and we conclude it does not.

We would also like to make clear that we are not rejecting the notion of a trade-off. Our study shows evidence that a trade-off between survival and reproductive effort likely does not drive within-species variation in clutch size. We do explicitly say this throughout our manuscript, and also provide suggestions of other areas where a trade-off may exist (L246-250). The point of our study is not whether trade-offs exist or not, it is whether there is a generalisable across-species trend for a trade-off between reproductive effort and survival – the most fundamental trade-off in our field but for which there is a lack of conclusive evidence within species.

• For your standard, pair-breeding passerine, there is an expectation that costs of raising chicks will increase linearly with clutch size. Each chick requires X feeding visits to reach the required fledge weight. But this is not the case for species which lay precocious chicks which are relatively independent and able to feed themselves straight after hatching - so again the relationship of care and survival is unlikely to be detectable by looking at the effect of clutch size but again, it doesn't mean there isn't a trade-off between breeding and survival.

Precocial birds still provide a level of parental care, such as protection from predators. Though we agree that the level of parental care in provisioning food (and in some cases in all parental care given) is lower in precocial than altricial birds, this would only make our reported effect size for manipulated birds to be an underestimate. Again, we would like to draw the reviewer’s attention to the fact we did detect a trade-off in manipulated birds and we do not suggest that trade-offs do not exist. The argument the reviewer suggests here does not hold for unmanipulated birds, as we found that birds that naturally lay larger clutch sizes have higher survival.

• The costs of raising a brood to adulthood for your standard pair-breeding passerine is bound to be extreme, simply by dint of the energy expenditure required. In fact, it was shown that the basal metabolic rate of breeding passerines was at the very edge of what is physiologically possible, the human equivalent being cycling the Tour de France (Nagy et al. 1990). If birds are at the very edge of what is physiologically possible, is it likely that clutch size is under weak selection?

If birds are at the very edge of what is physiologically possible, then indeed it would necessarily follow that if they increase the resource allocated in one area then expenditure in another area must be reduced. In many studies however, the overall brood mass is increased when chicks are added and cared for in an experimental setting, suggesting that birds are not operating at their limit all the time. Our simulations show that if individuals increase their clutch size, the survival cost of reproduction counterbalances the fitness gained by increasing clutch size and so there is no overall fitness gain to producing more offspring. Therefore, selection on clutch size is constrained to the within-species level. We do not say in our manuscript that clutch size is under weak selection – we only ask why variation in clutch size is maintained if selection always favours high-producing birds.

• Variation in clutch size is presented by the authors as inconsistent with the assumption that birds are under selection to lay the Lack clutch. Of course, this is absurd and makes me think that I have misunderstood the authors' intended point here. At any rate, the paper would benefit from more clarity about how variable clutch size has to be before it becomes a problem for optimality in the authors' view (lines 84-85; line 246). See Perrins (1965) for an exquisite example of how beautifully great tits optimise clutch size on average, despite laying between 5-12 eggs.

We woud like to thank the reviewer for highlighting that our manuscript may be misleading in places, however, we are unsure which part of our conclusions the author is referring to here.The question we pose is “why all birds don’t lay at the population optimum?”, and is central to the decades-long field of life-history theory. Why is variation maintained at such a level? As the reviewer outlines it ranges massively with some birds laying half of what other birds lay.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation