Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJeremy NanceUniversity of Wisconsin-Madison, Madison, United States of America
- Senior EditorDidier StainierMax Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
Reviewer #1 (Public Review):
Park et al demonstrate that cells on either side of a BM-BM linkage strengthen their adhesion to that matrix using a positive feedback mechanism involving a discoidin domain receptor (DDR-2) and integrin (INA-1 + PAT-3). In response to its extracellular ligand (Collagen IV/EMB-9), DDR-2 is endocytosed and initiates signaling that in turn stabilizes integrin at the membrane. DDR-2 signaling operates via Ras/LET-60. This work's strength lies in its excellent in vivo imaging, especially of endogenously tagged proteins. For example, tagged DDR-2:mNG could be seen relocating from seam cell membranes to endosomes. I also think a second strength of this system is the ability to chart the development of BM-BM linkage over time based on the stages of worm larval development. This allows the authors to show DDR signaling is needed to establish linkage, rather than maintain it. It likely is relevant to many types of cells that use integrin to adhere to BM and left me pondering a number of interesting questions. For example: (1) Does DDR-2 activation require integrin? Perhaps integrin gets the process started and DDR-2 positively reinforces that (conversely is DDR-2 at the top of a linear pathway)? (2) In ddr-2(qy64) mutants, projections seem to form from the central portion of the utse cell. Does this reveal a second function for DDR-2, regulating perhaps the cytoskeleton? And (3) can you use the forward genetic tools available in C. elegans to find new genes connecting DDR-2 and integrin?
I do see two areas where the manuscript could be improved. First, the authors rely on imprecise genetic methods to reach their conclusions (i.e. systemic RNAi, or expression of dominant negative constructs.) I think their conclusion would be stronger if they used tissue specific degradation to block ddr-2 function specifically in the utse or seam cells. Methods to do this are now regularly used in C. elegans and the authors have already developed the necessary tissue-specific promoters. Second, the manuscript is presented in the introduction as a study on formation and function of BM-BM linkage. The authors start the discussion in a similar manner. But their results are about adhesion between cells and BM. In fact they show the BM-BM linkage forms normally in ddr-2 mutants. Thus it seems like what they have really uncovered is an adhesion mechanism that works in parallel to the BM-BM linkage. Since ddr-2 appears to function equally in both utse + seam cells (based on their dominant negative data), there are likely three layers of adhesion (utse-BM, BM-BM, BM-seam) and if any of those break down, you get a partially penetrant rupture phenotype.
These concerns do not undercut the significance of this work, which identifies an interesting mechanism cells use to strengthen adhesion during BM linkage formation. In fact, I am excited to read future papers detailing the connection between DDR-2 and integrin. But before undertaking those experiments the authors should be certain which cells require DDR-2 activity, and that should not be determined based solely on mis expression of a dominant negative.
Reviewer #2 (Public Review):
This paper explores the mechanisms by which cells in tissues use the extracellular matrix (ECM) to reinforce and establish connections. This is a mechanistic and quantitative paper that uses imaging and genetics to establish that the Type IV collagen, DDR-2/collagen receptor discoidin domain receptor 2, signaling through Ras to strengthen an adhesion between two cell types in C. elegans. This connection needs to be strong and robust to withstand the pressure of the numerous eggs that pass through the uterus. The major strengths of this paper are in crisply designed and clear genetic experiments, beautiful imaging, and well supported conclusions. I find very few weaknesses, although, perhaps the evidence that DDR-2 promotes utse-seam linkage through regulation of MMPs could be stronger. This work is impactful because it shows how cells in vivo make and strengthen a connection between tissues through ECM interactions involving collaboration between discoidin and integrin.