Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorPaschalis KratsiosUniversity of Chicago, Chicago, United States of America
- Senior EditorClaude DesplanNew York University, New York, United States of America
Reviewer #1 (Public Review):
The manuscript by Zheng et al. examined the disease-causing mechanisms of two missense mutations within the homeodomain (HD) of CRX protein. Both mutations were found in humans and can produce severe dominant retinopathy. The authors investigated the two CRX HD mutants via in vitro DNA-binding assay (Spec-seq), in vivo chromatin-binding assay (ChIP-seq), in vivo expression assay of downstream target genes (RNA-seq), and retinal histological and functional assays. They concluded that p.E80A increased the transactivation activity of CRX and resulted in precocious photoreceptor differentiation, whereas p.K88N significantly changed the binding specificity of CRX and led to defects in photoreceptor differentiation and maintenance. The authors performed a significant amount of analyses. The claims are sufficiently supported by the data. The results not only uncovered the underlying disease-causing mechanisms, but also can significantly improve our understanding of the interaction between HD-TF and DNA during development.
Reviewer #2 (Public Review):
Zheng et al., investigated the molecular and functional mechanisms of two homeodomain missense mutations causing human retinal photoreceptor degeneration diseases in photoreceptor development regulated by the CRX transcription factor. They analyzed the E80A mutation associated with dominant cone-rod dystrophy (CRD) and the K88N mutation associated with dominant Leber Congenital Amaurosis (LCA). The authors found that E80A CRX binds to the same target DNA sites as WT CRX, but the binding specificity of K88N CRX is altered from that of WT in an in vitro assay. They generated Crx(E80A) and Crx(K88N) KI mice and performed ChIP assay and observed that K88N CRX binds to novel genomic regions from the WT-binding sites, while E80A binds to the WT sites. In addition, using the KI mice, they found that E80A and K88N differently affect the expression of Crx target genes. The authors may want to provide explicit clarification on whether CRX E80A mice exhibit cone development and/or degeneration defects.
This study is well executed with proper and solid methodologies, and the manuscript is clearly written. This study gives us the insights into how single missense CRX mutations lead to different types of human retinal photoreceptor degeneration diseases.