Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorAnne WestDuke University, Durham, United States of America
- Senior EditorMa-Li WongState University of New York Upstate Medical University, Syracuse, United States of America
Reviewer #1 (Public Review):
The current study was designed to test the hypothesis that neural circuit plasticity during adolescence can be targeted to restore cortical function under conditions of developmental disruptions that are relevant to psychiatric disorders. Specifically, the authors targeted the mesofrontal cortical dopamine system in 2 genetic mouse models of schizophrenia and performed optical recordings in combination with behavior and chemogenetic manipulations. Major findings and strengths include that stimulation of frontal dopaminergic projections in a limited adolescent time window can stably reverse defects in cortical neuronal activity and cognitive control in adulthood in 2 genetic mouse models of psychiatric disorders. While the precise postsynaptic mechanisms underlying the positive impact of adolescent mesofrontal dopamine stimulation were not address, another strength of this study is that the authors performed key manipulations using age and dose/intensity as dependent variables to show that the level of neural circuit activation during adolescence follows an inverted U-shape pattern. Collectively, this is a well-design study with many strengths and novel findings that are likely to positively impact a widespread of disciplines within the biological psychiatry and neuroscience field.
Reviewer #2 (Public Review):
The manuscript by Mastwal and colleagues explores how transient adolescent stimulation of ventral midbrain neurons that project to the frontal cortex may help to improve performance on certain memory tasks. The manuscript provides an interesting set of observations that DREADD-based activation over only 3 days during adolescence provides a fast-acting and long-lasting improvement in performance on Y-maze spontaneous alternation as well as aspects of neuronal function as assessed using in vivo imaging methods. While interesting, there are several weaknesses. First and foremost, it is not clear that the effects the authors are observing are mediated by dopamine. It has been clearly documented that the DAT-Cre line provides a better representation of midbrain dopamine cells in the mouse, particularly near the midline of the ventral midbrain (Lammel et al., Neuron 2015). This is precisely where the cells that project to the frontal cortex are located. Therefore, the selection of TH-Cre is problematic. It is very likely that the authors are labeling a substantial number of non-dopaminergic cells.
Reviewer #3 (Public Review):
In this manuscript, the authors use behavior, calcium imaging, and circuit modulation (DREADDs etc) to assess dopamine regulation of prefrontal cortical circuits in the mouse. The authors have previously established that activation of dopamine inputs to prefrontal cortex during adolescence can drive increases in mPFC DA bouton number and enhanced mPFC activity in WT mice. Here the authors use two mouse models - one with a reporter replacing the Arc gene, and another with knockout of the schizophrenia-associated gene Disc1, both of which are thought to have reduced prefrontal cortical activity. First they trained mice on a Y-maze and showed impaired performance in the Arc knockout. Then they demonstrated selective disruption of neuronal firing with calcium imaging at the time of the decision in the task. The Arc mice were found to have reduced dopamine bouton density, and adolescent activation of the DA neurons corrected this as well as the PFC firing and the behavior. Similar data were shown in the Disc1 KO. The data are well controlled and the authors use a number of leading edge methods.