Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorDominique Soldati-FavreUniversity of Geneva, Geneva, Switzerland
- Senior EditorDominique Soldati-FavreUniversity of Geneva, Geneva, Switzerland
Reviewer #1 (Public Review):
This paper describes the discovery, functional analysis and structure of TcaP, a protein encoded by the Vibrio phage satellite PLE that forms a size-determining scaffold around PLE procapsids made from helper phage ICP1 structural proteins. The system displays a fascinating similarity to the P2/P4 system, which had previously been unique in its use of a size-determining external scaffolding protein, Sid. The work is interesting, comprehensive and of high quality. The presentation could be improved as listed in the suggestions below.
An interesting observation is that PLE appears to be dependent on small capsids for efficient transduction. This is not completely surprising if the element uses a cos site type mechanism for packaging, since this requires an integer number of genomes to be packaged when the capsid is full, and this might be more difficult to accomplish when the helper capsid is much larger than the satellite, as is the case with ICP1. The authors mention in a few places that this is the first known satellite to have this requirement. However, this is not quite correct: a similar defect was seen in phi12/SaPIbov5, where the large phi12 capsid was not quite the right size for either two or three copies of the wild-type ("unevolved") SaPIbov5 (Carpena et al. 2016).
The authors present several micrographs showing capsids formed in the presence or absence of wildtype or mutant TcaP and CP (Fig. 1, Fig 2., Fig 3). However, each micrograph shows only a handful of particles of the "correct" size, in addition to a few shells that are aberrant or of a different size. I miss a more statistically rigorous enumeration of shells of different size (PLE or ICP1 sized, or different), empty vs. full, aberrant shells etc. This could be presented as a size distribution graph, a histogram or in table form.
In the abstract, the term "divergent satellite P4" is vague and unclear. Divergent from what? Probably they mean distinct from or unrelated to PLE. Please clarify.
How do they know that gp123 is a decoration protein? Was this previously determined, does it have (sequence) similarity to other known decoration proteins, or is it simply the most likely designation based on its position in the genome?
Although the reconstruction and modeling statistics are good, it is difficult to assess the quality of the map and the model from the presented figures. Details of the density and FSC curves (half-map and model-to-map) should be shown. It is also difficult to see the TcaP structure and how it compares to Sid from the figures presented.
Introduction, Paragraph 3: "...which is the number of coat proteins divided by 60" is not strictly speaking the definition of T number. The T number corresponds to the number of subtriangles that one triangular face of the icosahedron is divided into. It corresponds to the number of coat proteins divided by 60 in the canonical case, but in tailed phages, 5 copies are removed to make way for the portal protein. (Other viruses could be described as having architecture corresponding to a specific T number, but with divergent numbers of subunits, e.g. adenoviruses or polyomaviruses.)
Reviewer #2 (Public Review):
Phage satellites are fascinating elements that have evolved to hijack phages for induction, packaging, and transfer, promoting their widespread dissemination in nature. It is remarkable how different satellites use conserved strategies of parasitism, utilising unrelated proteins that perform similar roles in their cognate elements. In the current manuscript, Dr. Seed and coworkers elucidated the mechanism used by one family of satellites, the PLEs, to produce small capsids, a process that inhibits phage reproduction while increasing PLE transmission. The work is presented beautifully, and the results are astonishing. The authors identified the gene responsible for generating the small capsids, characterised its role in the PLE transfer and phage inhibition, and determined the structure of the PLE-sized small capsids. It is a truly impressive piece of work.
Reviewer #3 (Public Review):
The manuscript by Boyd and co-authors "A Vibrio cholerae viral satellite maximizes its spread and inhibits phage by remodelling hijacked phage coat proteins into small capsids" reports important results related to self-defending mechanisms that bacteria are used against phages that infect them. It has been shown previously that bacteria produce phage-inducible chromosomal island-like elements (PLE) that encode proteins that are integrated into bacterial genome. These proteins are used by bacteria to amend the phage capsids and to create phage-like particles (satellites) that move between cells and transfer the genetic material of PLE to another bacteria. That study highlights the interactions between a PLE-encoded protein, TcaP, and capsid proteins of the phage ICP1.
The manuscript is well written, provides a lot of new information and the results are supported by biochemical analysis.