Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorDavid DrewStockholm University, Stockholm, Sweden
- Senior EditorKenton SwartzNational Institute of Neurological Disorders and Stroke, Bethesda, United States of America
Reviewer #1 (Public Review):
Gap junctions, formed from connexins, are important in cell communication, allowing ions and small molecules to move directly between cells. While structures of connexins have previously been reported, the structure of Connexin 43, which is the most widely expressed connexin and is important in many physiological processes was not known. Qi et al used cryo-EM to solve the structure of Connexin 43. They then compared this structure to structures of other connexins. Connexin gap junctions are built from two "hemichannels" consisting of hexamers of connexins. Hemichannels from two opposing cells dock together to form a complete channel that allows the movement of molecules between cells. N-terminal helices from each of the 6 subunits of each hemichannel allow control of whether the channels are open or closed. Previously solved structures of Cx26 and Cx46/50 have the N-termini pointing down into the pore of the protein leaving a central pore and so these channels have been considered to be open. The structure that Qi et al observed has the N-termini in a more raised position with a narrower pore through the centre. This led them to speculate whether this was the "closed" form of the protein. They also noted that, if only the protein was considered, there were gaps between the N-terminal helices, but these gaps were filled with lipid-like molecules. They, therefore, speculated that lipids were important in the closure mechanism. To address whether their structure was open or closed with respect to ions they carried out molecular dynamics studies, and demonstrated that under the conditions of the molecular dynamics ions did not traverse the channel when the lipids were present.
Strengths:
The high resolution cryo-EM density maps clearly show the structure of the protein with the N-termini in a lateral position and lipid density blocking the gaps between the neighbouring helices. The conformation that they observe when they have solved the structure from protein in detergent is also seen when they reconstitute the protein into nanodiscs, which is ostensibly a more membrane-like environment. They, therefore, would appear to have trapped the protein in a stable conformational state.
The molecular dynamics simulations are consistent with the channel being closed when the lipid is present and raises the possibility of lipids being involved in regulation.
A comparison of this structure with other structures of connexin channels and hemichannels gives another representation of how the N-terminal helix of connexins can variously be involved in the regulation of channel opening.
Weaknesses:
While the authors have trapped a relatively stable state of the protein and shown that, under the conditions of their molecular dynamics simulations, ions do not pass through, it is harder to understand whether this is physiologically relevant. Determining this would be beyond the scope of the article. To my knowledge there is no direct evidence that lipids are involved in regulation of connexins in this way, but this is also an interesting area for future exploration. It is also possible that lipids were trapped in the pore during the solubilisation process making it non-physiological. The authors acknowledge this and they describe the structure as a "putative" closed state.
The positions of the mutations in disease shown in Figure 4 is interesting. However, the authors don't discuss/speculate how any of these mutations could affect the binding of the lipids or the conformational state of the protein.
It should also be noted that a structure of the same protein has recently been published. This shows a very similar conformation of the N-termini with lipids bound in the same way, despite solubilising in a different detergent.
Reviewer #2 (Public Review):
The authors have addressed most of the concerns. Yet, I still think the authors should at least mention in the article the residues involved in the intra-pore lipid binding pockets for further experimental validation (not only for those residues involve in disease). This is important because the lipid-like density information usually does not come integrated into the PDB structures, so it is not easily accessible for non-structural biologists. The structural data seems solid, and the MD data supports the notion that the GJC is in a putative close state.