Aging impairs cold-induced beige adipogenesis and adipocyte metabolic reprogramming

  1. Institute for Diabetes, Obesity & Metabolism; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
  2. Department of Cell and Developmental Biology; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
  3. Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
  4. Broad Institute of MIT and Harvard, Cambridge, MA, USA
  5. Harvard Medical School, Boston, MA, USA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Michael Czech
    University of Massachusetts Medical School, Worcester, United States of America
  • Senior Editor
    David James
    University of Sydney, Sydney, Australia

Reviewer #1 (Public Review):

Thermogenic adipocyte activity associate with cardiometabolic health in humans, but decline with age. Identifying the underlying mechanisms of this decline is therefore highly important.

To address this task, Holman and co-authors investigated the effects of two major determinants of thermogenic activity: cold, which induce thermogenic de novo differentiation as well as conversion of dormant thermogenic inguinal adipocytes: and aging, which strongly reduce thermogenic activity. The authors study young and middle-aged mice at thermoneutrality and following cold exposure.

Using linage tracing, the authors conclude that the older group produce less thermogenic adipocytes from progenitor differentiation. However, they found no differences between thermogenic differentiation capacity between the age groups when progenitors are isolated and differentiated in vitro. This finding is consistent with previous findings in humans, demonstrating that progenitor cells derived from dormant perirenal brown fat of humans differentiate into thermogenic adipocytes in vitro. Taken together, this underscores that age-related changes in the microenvironment rather than autonomous alterations in the ASPCs explain the age related decline in thermogenic capacity, This is an important finding in terms of identifying new approaches to switch dormant adipocytes into an active thermogenic phenotype.

To gain insight into the age-related changes, the authors use single cell and single nuclei RNA sequencing mapping of their two age groups, comparing thermoneutral and cold conditions between the two groups. Interestingly, where the literature previously demonstrated that de novo lipogenesis (DNL) occurs in relation to thermogenic activation, the authors show that DNL in fact is activated in a white adipocyte cell type, whereas the beige thermogenic adipocytes form a separate cluster.

Considering recent findings, that adipose tissue contains several subtypes of ASPCs and adipocytes, mapping the changes at single cell resolution following cold intervention provides an important contribution to the field, in particular as an older group with limited thermogenic adaptation is analyzed in parallel with a younger, more responsive group. This model also allowed for detection of microenvironment as a determining factor of thermogenic response.

The use of only two time points (young and middle-aged) along the aging continuum limits the conclusions that can be made on aging as the only driver of the observed differences between the groups. It should for example be noted that the older mice had higher weights and larger fat depots, thus the phenotype is complex and this should be taken into consideration when interpreting the data.

In conclusion, this study provides an important resource for further studies on how to reactivate dormant thermogenic fat and potentially improve metabolic health.

Reviewer #2 (Public Review):

This manuscript focused on why aging leads to decreased beiging of white adipose tissue. The authors used an inducible lineage tracing system and provided in vivo evidence that de novo beige adipogenesis from Pdgfra+ adipocyte progenitor cells is blocked during early aging in subcutaneous fat. Single-cell RNA sequencing of adipocyte progenitor cells and in vitro assays showed that these cells have similar beige adipogenic capacities in vitro. Single-cell nucleus RNA sequencing of mature adipocytes indicated that aged mice have more Npr3 high-expressing adipocytes in the subcutaneous fat from aged mice. Meanwhile, adipocytes from aged mice have significantly lower expression of genes involved in de novo lipogenesis, which may contribute to the declined beige adipogenesis.

The mechanism that leads to age-related impairment of white adipose tissue beiging is not very clear. The finding that Pdgfra+ adipocyte progenitor cells contribute to beige adipogenesis is novel and interesting. It is more intriguing that the aging process represses Pdgfra+ adipocyte progenitor cells from differentiating into beige adipocytes during cold stimulation. Mature adipocytes that have high de novo lipogenesis activity may support beige adipogenesis is also novel and worth further pursuing. The study was carried out with a nice experimental design, and the authors provided sufficient data to support the major conclusions. I only have a few comments that could potentially improve the manuscript.

1. It is interesting that after three days of cold exposure, aged mice also have much fewer beige adipocytes. Is de novo adipogenesis involved at this early stage? Or does the previous beige adipocyte that acquired white morphology have a better "reactivation" in young mice? It would be nice if the author could discuss the possibilities.
2. Is the absolute number of Pdgfra+ cells decreased in aged mice? It would be nice to include quantifications of the percentage of tomato+ beige adipocytes in total tomato+ cells to reflect the adipogenic rate.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation