Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorDarryl RussellUniversity of Adelaide, Adelaide, Australia
- Senior EditorWei YanWashington State University, Pullman, United States of America
Reviewer #1 (Public Review):
The study utilizes a variety of methods, chemical and expressed probes, caged release of IP3, as well as oocytes with mutations that alter zinc availability, that provide an elegant examination of how zinc deficiency and zinc excess modulate the transient and cyclic release of calcium during egg activation. In this manuscript, the authors sought to determine if there is any interplay between zinc and calcium, two divalent cations that have been demonstrated to have important roles during fertilization. They employ agents that disrupt normal zinc homeostasis and then monitor the resulting calcium oscillations during egg activation. If zinc was made unavailable via chelation with TPEN, then the calcium oscillations halted. This occurred regardless of the activation method, which included ICSI, PLC𝛇, Acetylcholine, strontium chloride, and thimerosal. This phenotype could be rescued by introducing zinc back into the egg via an ionophore, such as zinc pyrithione; however, too much zinc pyrithione also halted calcium oscillations. Taken together, these two results demonstrate that there is a threshold level of zinc that is required for proper calcium oscillations to occur.
Furthermore, the authors sought to understand how zinc affects the IP3 receptor, IP3R1. IP3R1 is the receptor that modulates the release of calcium from the endoplasmic reticulum. The authors cited a previous study that identified zinc binding sites on IP3R1. The authors highlight that there exist no studies regarding the regulation of IP3R1 by zinc; however, such studies were cited for a similar calcium channel, the RyRs. The authors use thapsigargin to inhibit the SERCA pump, leading to calcium leak from the IP3R1. TPEN blunted the amount of calcium leaked from the ER following treatment, suggesting that zinc occupancy is necessary for IP3R1 function.
The results of these experiments support the authors conclusions that zinc is essential for the IP3R1-mediated release of calcium in an oscillatory manner during egg activation. These results provide further insight into signals necessary for proper egg activation and the ultimate success of the resulting embryo.
Reviewer #2 (Public Review):
The manuscript describes more fully the relationship between zinc fluxes and calcium oscillations during egg activation by directly manipulating the level of zinc ions inside and outside the cell with chelators and ionophores and then measuring resulting changes in Ca++ oscillations. The authors have provided solid evidence consistent with their hypothesis that zinc ions regulate Ca++ oscillations by directly modulating the gating of the IP3-R which is the main calcium channel responsible for calcium release into the cytoplasm. The authors employ well established methods of calcium measurement along with various chelators, ionophores and a wide variety of methods that cause egg activation to demonstrate that an optimal level of zinc ions are required for Ca++ oscillations to occur.
Helpfully, the authors provide a model to explain their observations in Figure 7. In the model, the increase in zinc during maturation is permissive for later IP3-R gating in response to IP3 generated at fertilization. The experiments with TPEN solidly demonstrate that Zn is required because lowering free zinc, as indicated by Fluozin staining), abrogates Ca++ oscillations. This is true regardless of the method of activation. What is not clearly described in the model or in the manuscript is whether the levels of zinc at MII are simply permissive for IP3-R gating or whether there is a more acute relationship between zinc fluxes and Ca++ oscillations. In the original paper describing the zinc spark (Kim et al., ACS Chem Biol 6:716-723), the authors show that zinc efflux very closely mirrors Ca++ oscillations suggesting a more active relationship such that zinc efflux associate with each calcium spike could be necessary for terminating the Ca spike by depleting cytoplasmic Zn. There is some evidence in the present manuscript to support this. For example, in figure 3B, TPEN appears to acutely terminate a Ca spike. Whether this is repeatable is not known. Conversely, in Figure 5C and 5E, PyT leads to a rapid restoration of Ca oscillations within minutes demonstrating that changes in free Zn can cause rapid changes in Ca++ oscillations. Perhaps, rather than simply a permissive role, the normal Zn fluxes during activation may be acutely changing IP3-R gating sensitivity.
The role of TRPv3 and Trpm7 in Zn homeostasis during egg activation seems to be minor and the results in the dKO oocytes compared to TPEN are a bit confusing. In the dKO oocytes, zinc acquisition was sufficient to make it to MII suggesting Zn transport through these channels is dispensable for maturation. During activation, however, the response to Tg in dKO eggs was opposite that of TPEN, higher cytosolic Ca and increase amplitude (Figure 4G) vs lower cytoplasmic Ca and frequency for TPEN (Figure 4A). Perhaps loss of these two channels changes Ca gating independent of Zinc.
The effect of PyT on the apparent rise in cytoplasmic Ca++ in figure 6 is interpreted as caused by an artifact of high Zn concentrations. However, it is not clear that 0.05 uM PyT would necessarily increase cytoplasmic Zn to the point where FURA-2 fluorescence would increase. A simpler interpretation is that PyT allows sufficient Zn to enter the cell and keeps the IP3-R channels open causing a sustained rise in cytoplasmic Ca and preventing oscillations in Ca++. This interpretation would also preclude inhibitory effects of high Zn concentrations as shown in figure 7 which may or may not be present but are simply speculation.
Overall, this study significantly advances our understanding of egg activation and could lead to better ways of in vitro egg activation in women undergoing assisted reproduction.
Reviewer #3 (Public Review):
This study investigated the role of Zn2+ on the maintenance of Ca2+ oscillation upon fertilization. TPEN was used to reduce the level of available Zn2+ in fertilized oocytes and different inhibitors were used to pinpoint the mechanistic involvement of intracellular Zn2+ on the maintenance of Ca2+ oscillation. As also stated in the manuscript, previous studies have demonstrated the role of Zn2+ for the successful completion of meiosis/fertilization. However, the mechanistic actions of Zn2+ on the hallmark of fertilization processes such as Ca2+ oscillation has not been elucidated. A previous publication used TPEN to cease Ca2+ oscillation, but the study was not focused on the involvement of Zn2+ signal. The manuscript expands our understanding of fertilization process by describing how the level of Zn2+ regulates Ca2+ channels and stores. The manuscript is well-organized and the topic is important in early embryo development fields.