Natural variation in the Caenorhabditis elegans egg-laying circuit modulates an intergenerational fitness trade-off

  1. Université Côte d’Azur, CNRS, Inserm, IBV, Nice, France
  2. Institut NeuroMyoGène, CNRS, Inserm, Université de Lyon, Lyon, France

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Patrick Hu
    Vanderbilt University Medical Center, Nashville, United States of America
  • Senior Editor
    Piali Sengupta
    Brandeis University, Waltham, United States of America

Reviewer #1 (Public Review):

Mignerot et al. performed a Herculean effort to measure and describe natural variation in C. elegans egg-laying behavior and egg retention. The paper is well written and organized, but almost seems like two papers in one. However, I understand the desire to put these stories together. The authors show wild strains vary in egg retention with some extremes that appear phenotypically similar to species with viviparity (or live birth / internal hatching of offspring). They previously published a rare variant in the gene kcnl-1 that plays a role in egg retention but identify common variants in this study. They classify wild strains based on egg-retention to separate out the extremely different isolates. Egg laying has been extensively studied in the laboratory strain N2, but rarely addressed in natural strains. The authors investigate egg-laying behaviors using standard assays and find that their classified egg-laying groups have differences in sub-behaviors suggesting diverse roles in the ultimate egg-laying output. Then, they turn to the egg-laying circuit using both exogenous serotonin (5-HT), 5-HT modulatory drugs (e.g. SSRIs), and even genome editing to test epistasis with the mod-5 5-HT reuptake. The effects of 5-HT modulation and mutants are not predictive based on the basal behaviors and egg-retention phenotypes with the most extreme egg-retention strains differing in their responses. Interestingly, strains with more egg retention have decreased fitness (in their laboratory) measures but also provide a protective environment for offspring when exposed to common "natural" stressors. Their final conclusion that egg retention could be a trade-off between antagonistic effects of maternal vs. offspring fitness is supported well and sets the stage for future mechanistic studies across Caenorhabditis.

Reviewer #2 (Public Review):

Mignerot et al. study variations in egg retention in a large set of wild C. elegans strains using detailed analysis of a subset of these strains to those that these variations in egg retention appear to arise from variations in egg-laying behavior. The authors then take advantage of the advanced genetic technology available in C. elegans, and the fact that the cellular and molecular mechanisms that drive egg-laying behavior in the N2 laboratory strain of C. elegans have been studied intensely for decades. Thus, they demonstrate that variations in multiple genetic loci appear to drive variations in egg laying across species, although they are unable to identify the specific genes that vary other than a potassium channel already identified in a previous study from some of these same authors (Vigne et al., 2021). Mignerot et al. also present evidence that variations in the response of the egg-laying system to the neuromodulator serotonin appear to underlie variations in egg-laying behavior across species. Finally, the authors present a series of studies examining how the retention of eggs in utero affects the fertility and survival of mothers versus the survival of their progeny in a variety of adverse conditions, including limiting food, and the presence of acute environmental insults such as alcohol or acid. The results suggest that variations in egg-laying behavior evolved as a response to adverse environmental conditions that impose a trade-off between survival of the mothers versus their progeny.

Strengths:

The analysis of variations in egg laying by a large set of wild species significantly extends the previous work of Vigne et al. (2021), who focused on just one wild variant strain. Mignerot finds that variations in egg laying are widespread across C. elegans strains and result from changes in multiple genetic loci.

To determine why various strains vary in their egg-laying behavior, the authors take advantage of the genetic tractability of C. elegans and the huge body of previous studies on the cellular and molecular basis of egg-laying behavior in the laboratory N2 strain. Since serotonin is one signal that induces egg laying, the authors subject various strains to serotonin and to drugs thought to alter serotonin signaling, and they also use CRISPR induced gene editing to mutate a serotonin reuptake transporter in some strains. The results are largely consistent with the idea that variations across strains alter how the egg-laying system responds to serotonin.

The final figures in the paper present a far more detailed analysis than Vigne et al. (2021) of how variations in egg retention across species can affect fitness under various environmental stresses. Thus, Mignerot et al. look at competition under conditions of limiting food, and response to acute environmental insults, and compare the ability of adults, in utero eggs, and ex vivo eggs to survive. The results lead to an interesting discussion of how variations in behavior result in a trade-off in survival of mothers versus their progeny. The authors in their Discussion do a good job describing the challenges in interpreting the relevance of these laboratory results to the poorly-understood environmental conditions that C. elegans may experience in the wild. The Discussion also had an excellent section about how the ability of a single species to strongly regulate egg-laying behavior in response to its environment, and how this ability could be adaptive. Overall, these were the strongest and most interesting aspects of Mignerot et al.

Weaknesses
The specific potassium channel variation studied by Vigne et al. (2021) has by far the strongest effect on egg laying seen in the Mignerot et al. study and remains the only genetic variation that has been molecularly identified. So, Mignerot et al. were not able to identify any additional specific genes that vary across species to cause changes in egg laying, and this limited their ability to generate new insights into the specific cellular and molecular mechanisms that have changed across species to result in changes in egg laying behavior.

The authors' use of drug treatments and CRISPR to alter serotonin signaling yielded some insights into mechanistic variations in how the egg-laying system functions across strains, but these experiments only allow very indirect inferences into what is going on. The analysis in Figures 4 and 5 generates a complex set of results that are not easy to interpret. The clearest result seems to be that strains carrying the KCNL-1 point mutation lay eggs poorly and exogenous serotonin inhibits rather than stimulates egg laying in these strains. This basic result was to a large extent reported previously in Vigne et al. 2021.

The analysis of egg-laying behavior in Figure 3 is relatively weak. Whereas the state of the art in analyzing this behavior is to take videos of animals and track exactly when they lay eggs, the authors used a lower-tech method of just examining how many eggs were laid within 5 minute intervals. It is not clear that this allows adequate resolution to determine if the strains examined actually have clusters of egg-laying events (i.e. active phases) or not, so the entire analysis of active and inactive phase intervals seemed dubious. It was unclear that this analysis demonstrated differences in the patterns of egg-laying behavior between strains that could be sufficient to explain the differences in accumulation of unlaid eggs between these strains. In contrast, the variations in Fig 3G and 3H between strains were very strong. It is not clear why the authors did not focus more on these differences as being possibly largely responsible for the differences in egg retention between strains. In the discussion, the authors extensively write about the work of the Collins lab showing that retained eggs stretch the uterus to produce a signal that activates egg-laying muscles. Could it be that really this mechanism is the main one that varies between strains, leading to the observed variations in time to laying the first egg as well as variations in the number of retained eggs throughout adulthood?

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation