Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJohn McCutcheonArizona State University, Tempe, United States of America
- Senior EditorGeorge PerryPennsylvania State University, University Park, United States of America
Reviewer #1 (Public Review):
Martinez-Gutierrez and colleagues presented a timeline of important bacteria and archaea groups in the ocean and based on this they correlated the emergence of these microbes with GOE and NOE, the two most important geological events leading to the oxygen accumulation of the Earth. The whole study builds on molecular clock analysis, but unfortunately, the clock analysis contains important errors in the calibration information the study used, and is also oversimplified, leaving many alternative parameters that are known to affect the posterior age estimates untested. Therefore, the main conclusion that the oxygen availability and redox state of the ocean is the main driver of marine microbial diversification is not convincing.
Basically, what the molecular clock does is to propagate the temporal information of the nodes with time calibrations to the remaining nodes of the phylogenetic tree. So, the first and the most important step is to set the time constraints appropriately. But four of the six calibrations used in this study are debatable and even wrong.
(1) The record for biogenic methane at 3460 Ma is not reliable. The authors cited Ueno et al. 2006, but that study was based on carbon isotope, which is insufficient to demonstrate biogenicity, as mentioned by Alleon and Summons 2019.
(2) Three calibrations at Aerobic Nitrososphaerales, Aerobic Marinimicrobia, and Nitrite oxidizing bacteria have the same problem - they are all assumed to have evolved after the GOE where the Earth started to accumulate oxygen in the atmosphere, so they were all capped at 2320 Ma. This is an important mistake and will significantly affect the age estimates because maximum constraint was used (maximum constraint has a much greater effect on age estimates and minimum constraint), and this was used in three nodes involving both Bacteria and Archaea. The main problem is that the authors ignored the numerous evidence showing that oxygen can be produced far before GOE by degradation of abiotically-produced abundant H2O2 by catalases equipped in many anaerobes, also produced by oxygenic cyanobacteria evolved at least 500 Ma earlier than the onset of GOE (2500 Ma), and even accumulated locally (oxygen oasis). It is well possible that aerobic microbes could have evolved in the Archaean.
Once the phylogenetic tree is appropriately calibrated with fossils and other time constraints, the next important step is to test different clock models and other factors that are known to significantly affect the posterior age estimates. For example, different genes vary in evolutionary history and evolutionary rate, which often give very different age estimates. So it is very important to demonstrate that these concerns are taken into account. These are done in many careful molecular dating studies but missing in this study.
Reviewer #2 (Public Review):
In this paper, Martinez-Gutierrez and colleagues present a dated, multidomain (= Archaea+Bacteria) phylogenetic tree, and use their analyses to directly compare the ages of various marine prokaryotic groups. They also perform ancestral gene content reconstruction using stochastic mapping to determine when particular types of genes evolved in marine groups.
Overall, there are not very many papers that attempt to infer a dated tree of all prokaryotes, and this is a distinctive and up-to-date new contribution to that oeuvre. There are several particularly novel and interesting aspects - for example, using the GOE as a (soft) maximum age for certain groups of strictly aerobic Bacteria, and using gene content enrichment to try to understand why and how particular marine groups radiated.
Comments:
One overall feature of the results is that marine groups tend to be quite young, and there don't seem to be any modern marine groups that were in the ocean prior to the GOE. It might be interesting to study the evolution of the marine phenotype itself over time; presumably some of the earlier branches were marine? What was the criterion for picking out the major groups being discussed in the paper? My (limited) understanding is that the earliest prokaryotes, potentially including LUCA, LBCA and LACA, was likely marine, in the sense that there would not yet have been any land above sea level at such times. This might merit discussion in the paper. Might there have been earlier exclusively marine groups that went extinct at some point?
What do the stochastic mapping analyses indicate about the respective ancestors of Gracilicutes and Terrabacteria? At least in the latter case, the original hypothesis for the group was that they possessed adaptations to life on land - which seems connected/relevant to the idea of radiating into the sea discussed here - so it might be interesting to discuss what your analyses say about that idea.
I very much appreciate that finding time calibrations for microbes is challenging, but I nonetheless have a couple of comments or concerns about the calibrations used here:
The minimum age for LBCA and LACA (Nodes 1 and 2 in Fig. 1) was calibrated with the earliest evidence of biogenic methane ~3.4Ga. In the case of LACA, I suppose this reflects the view that LACA was a methanogen, which is certainly plausible although perhaps not established with certainty. However, I'm less clear about the logic of calibrating the minimum age of Bacteria using this evidence, as I am not aware that there is much evidence that LBCA was a methanogen. Perhaps the line of reasoning here could be stated more explicitly. An alternative, slightly younger minimum age for Bacteria could perhaps be obtained from isotope data ~3.2Ga consistent with Cyanobacteria (e.g., see https://pubmed.ncbi.nlm.nih.gov/30127539/).
I am also unclear about the rationale for setting the minimum age of the photosynthetic Cyanobacteria crown to the time of the GOE. Presumably, oxygen-generating photosynthesis evolved on the stem of (photosynthetic) Cyanobacteria, and it therefore seems possible that the GOE might have been initiated by these stem Cyanobacteria, with the crown radiating later? My confusion here might be a comprehension error on my part - it is possible that in fact one node "deeper" than the crown was being calibrated here, which was not entirely clear to me from Figure 1. Perhaps mapping the node numbers directly to the node, rather than a connected branch, would help? (I am assuming, based on nodes 1 and 2, that the labels are being placed on the branch directly antecedent to the node of interest)?