Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorTatjana TchumatchenkoUniversity Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Senior EditorPanayiota PoiraziFORTH Institute of Molecular Biology and Biotechnology, Heraklion, Greece
Reviewer #1 (Public Review):
This manuscript investigates how homeostatic structural plasticity and synaptic scaling act under different levels of activity suppression and how this influences the network dynamics during growth and temporary or persistent silencing. To this end, the authors first use electrophysiology and chronic imaging to investigate the influence of different levels of AMPA-receptor blockade. A smaller level leads to reduced activity and up-regulation of synapse size and number, whereas a complete block abolished activity and decreases spine numbers. Along this line, the choice to block AMPAR is unconventional and needs to be better justified as both investigated homeostatic mechanisms are known to be AMPAR dependent.
Second, this finding is transferred into a mathematical rewiring rule, where spine number shrinks, grows, and shrinks again with increasing activity. It is shown that this rule, in contrast to other, simpler rules (grow, shrink), can grow healthy networks from scratch only if additional stimulation is provided. Continuing with these stable networks, the activity of a sub-network is increased, decreased, or silenced by modulating an external stimulation to the neurons. Whereas both activity and connectivity return to a stable state for small alteration, complete silencing leads to disconnection of the silenced network parts. Recovery from this can be achieved by restoring stimulation before the connectivity has completely decayed or by adding sufficiently fast synaptic scaling, although both cases can lead to unhealthy activity. A more systematic assessment of this interaction between scaling and homeostatic rewiring revealed a minimal timescale ratio that is needed for recovery. This is an important step towards disentangling the necessity of multiple, seemingly redundant mechanisms. Yet, in the simulations, the role of recurrent connectivity versus external inputs should be investigated in more detail in order to ensure the generality of the finding that a recovery of the activity is impossible for the presented rewiring rule without synaptic scaling.
Overall, the combination of experiments and simulations is a promising approach to investigating network self-organization. The gradual blocking of activity is especially valuable to inform mathematical models and distinguish them from alternatives. Here, the simulation results clearly demonstrate that the experimentally informed rule exhibits qualitatively different dynamics including the need for another homeostatic mechanism. However, a better connection between the simulations and experiment two would be desirable. In particular, it is unclear whether the model would actually reproduce the experiment, to which other experiments the model results relate, and which experimentally testable predictions the model makes.
In summary, this manuscript makes a valuable contribution to discerning the mathematical shape of a homeostatic structural plasticity model and understanding the necessity of synaptic scaling in the same network. Both experimental and computational methods are solid and well-described. Yet, both parts could be linked better in order to obtain conclusions with more impact and generality.
Reviewer #2 (Public Review):
This manuscript by Lu et al addresses the understudied interplay between structural and functional changes underlying homeostatic plasticity. Using hippocampal organotypic slice cultures allowing chronic imaging of dendritic spines, the authors showed that partial or complete inhibition of AMPA-type glutamate receptors differentially affects spine density, respectively leading to an increase or decrease of spines. Based on that dataset, they built a model where activity-dependent synapse formation is regulated by a biphasic rule and tested it in stimulation- or deprivation-induced homeostatic plasticity. The model matches experimental data (from the authors and the literature) quite well, and provides a framework within which functional and structural changes coexist to regulate firing rate homeostasis.
While the correlation between changes in AMPAR numbers and in spine number/size has been well characterized during Hebbian plasticity, the situation is much less clear in homeostatic plasticity due to multiple studies yielding diverging results. This manuscript adds new experimental results to the existing data and presents a valuable effort to generate a model that can explain these divergences in a unifying and satisfactory framework.
The model and its successive implantation steps are well presented along a clear thread. However, it would have benefited from having an actual timeline of structural changes throughout the three days of AMPAR inhibition, especially as their experimental model allows it. This would have provided additional information on spine dynamics (especially transient spines) and on the respective timescale of the structural and functional changes, and thus led to a better-informed model.
Additionally, the model would have been strengthened by an experimental dataset with homeostatic plasticity induced by higher activity (e.g. with bicuculline). To the best of my knowledge, there is currently no data on structural plasticity following scaling down, and it is also known that scaling up and down are mediated by different molecular pathways. The extension of the model from scaling up (in response to silencing) to scaling down (in response to increased activity) offers an interesting perspective but may be a bit of a stretch.
Finally, the authors are very specific in their definition and distinction of structural and functional homeostatic plasticity for their model. Structural plasticity is limited to spine density and functional plasticity to synaptic scaling, which allows the authors to discuss the interplay between very distinct "synapse number-based structural plasticity" and "synaptic weight-based synaptic scaling", and appears to bypass the fact that spine size regulates the space available for AMPARs at the synapse and thus synaptic weight. The authors are of course aware of the importance of changes in spine size, as they present some intriguing data showing that spine size is differentially affected by partial or complete inhibition of AMPARs and include the putative role of spine size changes in the discussion. However, spine size does not seem to be taken into account in their network simulations, which present synaptic scaling and structural plasticity as completely distinct processes. While the model still offers interesting insights into the interaction of these processes, it would have benefited from a less stringent distinction; this choice and the reasons behind it should be made more explicit in the manuscript.