Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorLuis LarrondoPontificia Universidad Católica de Chile, Santiago, Chile
- Senior EditorJonathan CooperFred Hutchinson Cancer Research Center, Seattle, United States of America
Reviewer #1 (Public Review):
In this study, the authors aimed to investigate how cells respond to dynamic combinations of two stresses compared to dynamic inputs of a single stress. They applied the two stresses - carbon stress and hyperosmotic stress - either in or out of phase, adding and removing glucose and sorbitol.
Both a strength and a weakness, as well as the main discovery, is that the cells' hyperosmotic response strongly requires glucose. For in-phase stress, cells are exposed to hyperosmotic shock without glucose, limiting their ability to respond with the well-studied HOG pathway; for anti-phase stress, cells do have glucose when hyperosmotically shocked, but experience a hypo-osmotic shock when both glucose and sorbitol are simultaneously removed. Responding with the HOG pathway and so amassing intracellular glycerol amplifies the impact of this hypo-osmotic shock. Counterintuitively then, it is the presence of glucose rather than the stress of its absence that is deleterious for the cells.
The bulk of the paper supports these conclusions with clean, compelling time-lapse microscopy, including extensive analysis of gene deletions in the HOG network and measurements of both division and death rates. The methodology the authors develop is powerful and widely applicable.
Some discussion of the value of applying periodic inputs would be helpful. Cells are unlikely to have previously seen such inputs, and periodic stimuli may reveal behaviours that are rarely relevant to selection.
The authors' findings demonstrate the tight links that can exist between metabolism and the ability to respond to stress. Their study appears to have parted somewhat from their original aim because of the HOG pathway's reliance on glucose. It would be interesting to see if the cells behaviour is simpler in periodically varying sorbitol and a stress where there is little known connection to the HOG network, such as nitrogen stress.
Reviewer #2 (Public Review):
The authors have used microfluidic channels to study the response of budding yeast to variable environments. Namely, they tested the ability of the cells to divide when the medium was repeatedly switched between two different conditions at various frequencies. They first characterized the response to changes in glucose availability or in the presence of hyper-osmotic stress via the addition of sorbitol to the medium. Subsequently, the two stresses were combined by applying the alternatively or simultaneously (in-phase). Interestingly, the observed that the in-phase stress pattern allowed more divisions and low levels of cell mortality compared to the alternating stresses where cells were dividing slowly and many cells died. A number mutants in the HOG pathway were tested in these conditions to evaluate their responses. Moreover, the activation of the MAPK Hog1 and the transcriptional induction of the hyper-osmotic stress promoter STL1 were quantified by fluorescence microscopy.
Overall, the manuscript is well structured and data are presented in a clear way. The time-lapse experiments were analyzed with high precision. The experiments confirm the importance of performing dynamic analysis of signal transduction pathways. While the experiments reveal some unexpected behavior, I find that the biological insights gained on this system remain relatively modest.
In the discussion section, the authors mention two important behaviors that their data unveil: resource allocation (between glycolysis and HOG-driven adaptation) and regulation of the HOG-pathway based on the presence of glucose. These behaviors had been already observed in other reports (Sharifan et al. 2015 or Shen et al. 2023, for instance). I find that this manuscript does not provide a lot of additional insights into these processes. One clear evidence that is presented, however, is the link between glycerol accumulation during the sorbitol treatment and the cell death phenotype upon starvation in alternating stress condition. However, no explanations or hypothesis are formulated to explain the mechanism of resource allocation between glycolysis and HOG response that could explain the poor growth in alternating stresses or the lack of adaptation of Hog1 activity in absence of glucose.
Another key question is to what extent the findings presented here can be extended to other types of perturbations. Would the use of alternative C-source or nitrogen starvation change the observed behaviors in dynamic stresses? If other types of stresses are used, can we expect a similar growth pattern between alternating versus in-phase stresses?