Autotrophic phenotype achieved by introducing 3 mutations on top of a rationally designed ancestor.
(A) We rationally designed the “wild-type” E. coli background strain (BW25113, depicted as a black bacterium) by introducing 4 enzymes: RuBisCO (cbbM), phosphoribulokinase (prkA), carbonic anhydrase (CA) andformate dehydrogenase (fdh), and by 3 genomic knockouts: glucose-6-phosphate dehydrogenase (zwf) and phosphofructokinase A&B (pfkAB). We denote the resulting strain as “ancestor” (brown bacterium). (B) We tested the resulting strain for autotrophic growth and, since it didn’t grow, we used it for adaptive lab evolution in xylose-limited chemostats -i.e., conditions that select for higher carbon fixation flux. Altogether, we were able to isolate three evolved clones (two distinct strains from one chemostat experiment, Evolved I & II, and another strain from a second experiment, Evolved III, step B1). (C) Out of four consensus mutations that we identified, two -rpoB and pgi -were incorporated into the ancestor to get “ancestor 2.0” (light blue bacterium, step C1). Once more, we tested for autotrophic growth and were unsuccessful. Therefore, we initiated another round of adaptive lab evolution experiments using ancestor 2.0 growing in two xylose limited chemostats and isolated two evolved clones (one from each chemostat, step B2). The two clones shared a single consensus mutation, in crp. We thus created a new strain from ancestor 2.0 by introducing the crp mutation to it (blue bacterium, step C2). This strain could grow autotrophically and thus we achieved a compact autotrophic strain.