Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorCarmen WilliamsNational Institute of Environmental Health Sciences, Research Triangle Park, United States of America
- Senior EditorWei YanWashington State University, Pullman, United States of America
Reviewer #1 (Public Review):
The authors investigated the metabolic effects of ∆9-THC, the main psychoactive component of cannabis, on early mouse embryonic cell types. They found that ∆9-THC increases proliferation in female mouse embryonic stem cells (mESCs) and upregulates glycolysis. Additionally, primordial germ cell-like cells (PGCLCs) differentiated from ∆9-THC-exposed cells also show alterations to their metabolism. The study is valuable because it shows that physiologically relevant ∆9-THC concentrations have metabolic effects on cell types from the early embryo, which may cause developmental effects. However, the claim of "metabolic memory" is not justified by the current data, since the effects on PGCLCs could potentially be due to ∆9-THC persisting in the cultured cells over the course of the experiment, even after the growth medium without ∆9-THC was added.
The study shows that ∆9-THC increases the proliferation rate of mESCs but not mEpiLCs, without substantially affecting cell viability, except at the highest dose of 100 µM which shows toxicity (Figure 1). Treatment of mESCs with rimonabant (a CB1 receptor antagonist) blocks the effect of 100 nM ∆9-THC on cell proliferation, showing that the proliferative effect is mediated by CB1 receptor signaling. Similarly, treatment with 2-deoxyglucose, a glycolysis inhibitor, also blocks this proliferative effect (Figure 4G-H). Therefore, the effect of ∆9-THC depends on both CB1 signaling and glycolysis. This set of experiments strengthens the conclusions of the study by helping to elucidate the mechanism of the effects of ∆9-THC.
Although several experiments independently showed a metabolic effect of ∆9-THC treatment, this effect was not dose-dependent over the range of concentrations tested (10 nM and above). Given that metabolic effects were observed even at 10 nM ∆9-THC (see for example Figure 1C and 3B), the authors should test lower concentrations to determine the dose-dependence and EC50 of this effect. The authors should also compare their observed EC50 with the binding affinity of ∆9-THC to cellular receptors such as CB1, CB2, and GPR55 (reported by other studies).
The study also profiles the transcriptome and metabolome of cells exposed to 100 nM ∆9-THC. Although the transcriptomic changes are modest overall, there is upregulation of anabolic genes, consistent with the increased proliferation rate in mESCs. Metabolomic profiling revealed a broad upregulation of metabolites in mESCs treated with 100 nM ∆9-THC.
Additionally, the study shows that ∆9-THC can influence germ cell specification. mESCs were differentiated to mEpiLCs in the presence or absence of ∆9-THC, and the mEpiLCs were subsequently differentiated to mPGCLCs. mPGCLC induction efficiency was tracked using a BV:SC dual fluorescent reporter. ∆9-THC treated cells had a moderate increase in the double positive mPGCLC population and a decrease in the double negative population. A cell tracking dye showed that mPGCLCs differentiated from ∆9-THC treated cells had undergone more divisions on average. As with the mESCs, these mPGCLCs also had altered gene expression and metabolism, consistent with an increased proliferation rate.
My main criticism is that the current experimental setup does not distinguish between "metabolic memory" vs. carryover of THC (or its metabolites) causing metabolic effects. The authors assume that their PGCLC induction was performed "in the absence of continuous exposure" but this assumption may not be justified. ∆9-THC might persist in the cells since it is highly hydrophobic. In order to rule out the persistence of ∆9-THC as an explanation of the effects seen in PGCLCs, the authors should measure concentrations of ∆9-THC and THC metabolites over time during the course of their PGCLC induction experiment. This could be done by mass spectrometry. This is particularly important because 10 nM of ∆9-THC was shown to have metabolic effects (Figure 1C, 3B, etc.). Since the EpiLCs were treated with 100 nM, if even 10% of the ∆9-THC remained, this could account for the metabolic effects. If the authors want to prove "metabolic memory", they need to show that the concentration of ∆9-THC is below the minimum dose required for metabolic effects.
Overall, this study is promising but needs some additional work in order to justify its conclusions. The developmental effects of ∆9-THC exposure are important for society to understand, and the results of this study are significant for public health.
Reviewer #2 (Public Review):
In the study conducted by Verdikt et al, the authors employed mouse Embryonic Stem Cells (ESCs) and in vitro differentiation techniques to demonstrate that exposure to cannabis, specifically Δ9-tetrahydrocannabinol (Δ9-THC), could potentially influence early embryonic development. Δ9-THC was found to augment the proliferation of naïve mouse ESCs, but not formative Epiblast-like Cells (EpiLCs). This enhanced proliferation relies on binding to the CB1 receptor. Moreover, Δ9-THC exposure was noted to boost glycolytic rates and anabolic capabilities in mESCs. The metabolic adaptations brought on by Δ9-THC exposure persisted during differentiation into Primordial Germ Cell-Like Cells (PGCLCs), even when direct exposure ceased, and correlated with a shift in their transcriptional profile. This study provides the first comprehensive molecular assessment of the effects of Δ9-THC exposure on mouse ESCs and their early derivatives. The manuscript underscores the potential ramifications of cannabis exposure on early embryonic development and pluripotent stem cells. However, it is important to note the limitations of this study: firstly, all experiments were conducted in vitro, and secondly, the study lacks analogous experiments in human models.
Reviewer #3 (Public Review):
Verdikt et al. focused on the influence of Δ9-THC, the most abundant phytocannabinoid, on early embryonic processes. The authors chose an in vitro differentiation system as a model and compared the proliferation rate, metabolic status, and transcriptional level in ESCs, exposure to Δ9-THC. They also evaluated the change of metabolism and transcriptome in PGCLCs derived from Δ9-THC-exposed cells. All the methods in this paper do not involve the differentiation of ESCs to lineage-specific cells. So the results cannot demonstrate the impact of Δ9-THC on preimplantation developmental stages. In brief, the authors want to explore the impact of Δ9-THC on preimplantation developmental stages, but they only detected the change in ESCs and PGCLCs derived from ESCs, exposure to Δ9-THC, which showed the molecular characterization of the impact of Δ9-THC exposure on ESCs and PGCLCs.