Inhibition of Notch activity by phosphorylation of CSL in response to parasitization in Drosophila

  1. Department of Molecular Genetics, Institute of Biology, University of Hohenheim, 70599 Stuttgart, Germany

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Maneesha Inamdar
    Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
  • Senior Editor
    K VijayRaghavan
    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India

Reviewer #1 (Public Review):

The authors previously showed in cell culture that Su(H), the transcription factor mediating Notch pathway activity, was phosphorylated on S269 and they found that a phospho-deficient Su(H) allele behaves as a moderate gain of Notch activity in flies, notably during blood cell development. Since a downregulation of Notch signaling was proposed to be important for the production of a specialized blood cell types (lamellocytes) in response to wasp parasitism, the authors hypothesized that Su(H) phosphorylation might be involved in this cellular immune response.

Consistent with their hypothesis, the authors show that Su(H)S269A knock-in flies display a reduced response to wasp parasitism and that Su(H) is phosphorylated upon infestation. Using in vitro kinase assays and a genetic screen, they identify the PKCa family member Pkc53E as the putative kinase involved in Su(H) phosphorylation and they show that Pkc53E can bind Su(H). They further show that Pkc53E deficit or its knock-down in larval blood cells results in similar blood cell phenotypes as Su(H)S269A, including a reduced response to wasp parasitism, and their epistatic analyses indicate that Pkc53E acts upstream of Su(H).

Strengths
The manuscript is well presented and the experiments are sound, with a good combination of genetic and biochemical approaches and several clear phenotypes which back the main conclusions. Notably Su(H)S269A mutation or Pkc53E deficiency strongly reduces lamellocyte production and the epistatic data are convincing.

Weaknesses
The phenotypic analysis of larval blood cells remains rather superficial. Looking at melanized cells is a crude surrogate to quantify crystal cell numbers as it is biased toward sessile cells (with specific location) and does not bring information concerning the percentage of blood cells differentiated along this lineage.

In Su(H)S269A knock-in or Pkc53E zygotic mutants, the increase in crystal cells in uninfected conditions and the decreased capacity to induce lamellocytes following infection could have many origins which are not investigated. For instance, premature blood cell differentiation could promote crystal cell differentiation and reduce the pool of lamellocytes progenitors. These mutations could also affect the development and function of the posterior signaling center in the lymph gland, which plays a key role in lamellocyte induction. Similarly, the mild decrease on resistance to wasp infestation (Fig. 2A) could reflect a constitutive reduction in blood cell numbers in Su(H)S269A larvae rather than a defective down-regulation of Notch activity.
Whereas the authors also present targeted-knock down/inhibition of Pkc53E suggesting that this enzyme is required in blood cells to control crystal cell fate (Fig. 6), it is somehow misleading to use lz-GAL4 as a driver in the lymph gland and hml-GAL4 in circulating hemocytes as these two drivers do not target the same blood cell populations/steps in the crystal cell development process.

In addition, the authors do not present evidence that Pkc55E function (and Su(H) phosphorylation) is required specifically in blood cells to promote lamellocyte production in response to infestation.

Finally, the conclusion that Pkc53E is (directly) responsible for Su(H) phosophorylation needs to be strengthened. Most importantly, the authors do not demonstrate that Pkc53E is required for Su(H) phosphorylation in vivo (i.e. that Su(H) is not phosphorylated in the absence of Pkc53E following infestation). In addition, the in vitro kinase assays with bacterially purified Pkc53E (in the presence of PMA or using an activated variant of Pkc53E) only reveal a weak activity on a Su(H) peptide encompassing S269 (Fig. 4). Moreover, while the authors show a coIP between an overexpressed Pkc53E and endogenous Su(H) (Fig. 7) (in the absence of infestation), it has recently been reported that Pkc53E is a cytoplasmic protein in the eye (Shieh et al. 2023), calling for a direct assessment of Pkc53E expression and localization in larval blood cells under normal conditions and upon infestation. Furthermore, the effect of the PKCa agonist PMA on Su(H)-induced reporter gene expression in cell culture and crystal cell number in vivo is somehow consistent with the authors hypothesis, but some controls are missing (notably western blots to show that PMA/Staurosporine treatment does not affect Su(H)-VP16 level) and it is unclear why STAU treatment alone promotes Su(H)-VP16 activity (in their previous reports, the authors found no difference between Su(H)S269A-VP16 and Su(H)-VP16) or why PMA treatment still has a strong impact on crystal cell number in Su(H)S269A larvae.

Reviewer #2 (Public Review):

Summary: The current draft by Deischel et.al., entitled "Inhibition of Notch activity by phosphorylation of CSL in response to parasitization in Drosophila" decribes the role of Pkc53E in the phosphorylation of Su(H) to downregulate its transcriptional activity to mount a successful immune response upon parasitic wasp-infection. Overall, I find the study interesting and relevant especially the identification of Pkc53E in phosphorylation of Su(H) is very nice. However, I have a number of concerns with the manuscript which are central to the idea that link the phosphorylation of Su(H) via Pkc53E to implying its modulation of Notch activity. I enlist them one by one subsequently.

Strengths: I find the study interesting and relevant especially because of the following:
1. The identification of Pkc53E in phosphorylation of Su(H) is very interesting.
2. The role of this interaction in modulating Notch signaling and thereafter its requirement in mounting a strong immune response to wasp infection is also another strong highlight of this study.

Weaknesses:1. Epistatic interaction with Notch is needed: In the entire draft, the authors claim Pkc53E role in the phosphorylation of Su(H) is down-stream of notch activity. Given the paper title also invokes Notch, I would suggest authors show this in a direct epistatic interaction using a Notch condition. If loss of Notch function makes many more lamellocytes and GOF makes less, then would modulating Pkc53E (and SuH)) in this manifest any change? In homeostasis as well, given gain of Notch function leads to increased crystal cells the same genetic combinations in homeostasis will be nice to see.
While I understand that Su(H) functions downstream of Notch, but it is now increasingly evident that Su(H) also functions independent of Notch. An epistatic relationship between Notch and Pkc will clarify if this phosphorylation event of Su(H) via Pkc is part of the canonical interaction being proposed in the manuscript and not a non-canoncial/Notch pathway independent role of Su(H).

This is important, as I worry that in the current state, while the data are all discussed inlight of Notch activity, any direct data to show this affirmatively is missing. In our hands we do find Notch independent Su(H) function in immune cells, hence this is a suggestion that stems from our own personal experience.

2. Temporal regulation of Notch activity in response to wasp-infection and its overlapping dynamics of Su(H) phosphorylation via Pkc is needed: First, I suggest the authors to show how Notch activity post infection in a time course dependent manner is altered. A RT-PCR profile of Notch target genes in hemocytes from infected animals at 6, 12, 24, 48 HPI, to gauge an understanding of dynamics in Notch activity will set the tone for when and how it is being modulated. In parallel, this response in phospho mutant of Su(H) will be good to see and will support the requirement for phosphorylation of Su(H) to manifest a strong immune response. Second, is the dynamics of phosphorylation in a time course experiment is missing. While the increased phosphorylation of Su(H) in response to wasp-infestation shown in Fig.2B is using whole animal, this implies a global down-regulation of Su(H)/Notch activity. The authors need to show this response specifically in immune cells. The reader is left to the assumption that this is also true in immune cells. Given the authors have a good antibody, characterizing this same in circulating immune cells in response to infection will be needed. A time course of the phosphorylation state at 6, 12, 24, 48 HPI, to guage an understanding of this dynamics is needed. The authors suggest, this mechanism may be a quick way to down-regulate Notch, hence a side by side comparison of the dynamics of Notch down-regulation (such as by doing RT-PCR of Notch target genes following different time point post infection) alongside the levels of pS269 will strengthen the central point being proposed. Last, in Fig7. the authors show Co-immuno-precipitation of Pkc53EHA with Su(H)gwt-mCh 994 protein from Hml-gal4 hemocytes. I understand this is in homeostasis but since this interaction is proposed to be sensitive to infection, then a Co-IP of the two in immune cells, upon infection should be incorporated to strengthen their point.

3. In Fig 5B, the authors show the change in crystal cell numbers as read out of PMA induced activation of Pkc53E and subsequent inhibition of Su(H) transcriptional activity, I would suggest the authors use more direct measures of this read out. RT-PCR of Su(H) target genes, in circulating immune cells, will strengthen this point. Formation of crystal cells is not just limited to Notch, I am not convinced that this treatment or the conditions have other affect on immune cells, such as any impact on Hif expression may also lead to lowering of CC numbers. Hence, the authors need to strengthen this point by showing that effects are direct to Notch and Su(H) and not non-specific to any other pathway also shown to be important for CC development.

4. In addition to the above mentioned points, the data needs to be strengthened to further support the main conclusions of the manuscript. I would suggest the authors present the infection response with details on the timing of the immune response. Characterization of the immune responses at respective time points (as above or at least 24 and 48 HPI, as norms in the field) will be important. Also, any change in overall cell numbers, other immune cells, plasmatocytes or CC post infection is missing and is needed to present the specificity of the impact. The addition of these will present the data with more rigor in their analysis.

5. Finally, what is the view of the authors on what leads to activation of Pkc53E, any upstream input is not presented. It will be good to see if wasp infection leads to increased Pkc53 kinase activity.

Overall, I think the findings in the current state are interesting and fill an important gap, but the authors will need to strengthen the point with more detailed analysis that includes generating new data and also presenting the current data with more rigor in their approach. The data have to showcase the relationship with Notch pathway modulation upon phosphorylation of CSL in a much more comprehensive way, both in homeostasis and in response to infection which is entirely missing in the current draft.

Reviewer #3 (Public Review):

Diechsel et al. provide important and valuable insights into how Notch signalling is shut down in response to parasitic wasp infestation in order to suppress crystal cell fate and favour lamellocyte production. The study shows that CSL transcription factor Su(H) is phosphorylated at S269A in response to parasitic wasp infestation and this inhibitory phosphorylation is critical for shutting down Notch. The authors go on to perform a screen for kinases responsible for this phosphorylation and have identified Pkc53E as the specific kinase acting on Su(H) at S269A. Using analysis of mutants, RNAi and biochemistry-based approaches the authors convincingly show how Pkc53E-Su(H) interaction is critical for remodelling hematopoiesis upon wasp challenge. The data presented supports the overall conclusions made by the authors. There are a few points below that need to be addressed by the authors to strengthen the conclusions:

  1. The authors should check melanized crystal cells in Su(H)gwt and Su(H)S269A in presence of PMA and Staurosporine?
  2. Data for number of dead pupae, flies eclosed, wasps emerged post infestation should be monitored for the following genotypes and should be included: Pkc53EΔ28, Su(H)S269A, Pkc53EΔ28 Su(H)S269A, Su(H)S269D, Su(H)S269D Pkc53EΔ28
  3. The exact molecular trigger for activation of Pkc53E upon wasp infestation is not clear.
  4. The authors should check if activating ROS alone or induction of Calcium pulses/DUOX activation can mimic this condition and can trigger activation of Pkc53E and thereby cause phosphorylation of Su(H) at S269
  5. Does Pkc53E get activated during sterile inflammation?
  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation