Active Dendrites Enable Robust Spiking Computations Despite Timing Jitter

  1. Department of Engineering, University of Cambridge, UK
  2. Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate University, Onna, 904-0495, Japan

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Gordon Berman
    Emory University, Atlanta, United States of America
  • Senior Editor
    Panayiota Poirazi
    FORTH Institute of Molecular Biology and Biotechnology, Heraklion, Greece

Reviewer #1 (Public Review):

This is an elegant didactic exposition showing how dendritic plateau potentials can enable neurons to perform reliable 'binary' computations in the face of realistic spike time jitter in cortical networks. The authors make many good arguments, and the general concept underlying the paper is sound. A strength is their systematic progression from biophiysical to simplified models of single neurons, and their parallel investigation of spiking and binary neural networks, with training happening in the binary neural network.

Reviewer #2 (Public Review):

Summary:

Artificial intelligence (AI) could be useful in some applications and could help humankind. Some forms of AI work on the platform of artificial neural networks (ANN). ANNs are inspired by real brains and real neurons. Therefore understanding the repertoire and logic of real neurons could potentially improve AANs. Cell bodies of real neurons, and axons of real neurons, fire nerve impulses (nerve impulses are very brief ~2 ms, and very tall ~100 mV). Dendrites, which comprise ~80% of the total neuronal membrane (80% of the total neuronal apparatus) typically generate smaller (~50 mV amplitude) but much longer (~100 ms duration) electrical transients, called glutamate-mediated dendritic plateau potentials. The authors have built artificial neurons capable of generating such dendritic plateau potentials, and through computer simulations the authors concluded that long-lasting dendritic signals (plateau potentials) reduce negative impact of temporal jitter occurring in real brain, or in AANs. The authors showed that in AANs equipped with neurons whose dendrites are capable of generating local dendritic plateau potentials, the sparse, yet reliable spiking computations may not require precisely synchronized inputs. That means, the real world can impose notable fluctuations in the network activity and yet neurons could still recognize and pair the related network events. In the AANs equipped with dendritic plateaus, the computations are very robust even when inputs are only partially synchronized. In summary, dendritic plateau potentials endow neurons with ability to hold information longer and connect two events which did not happen at the same moment of time. Dendritic plateaus circumvent the negative impact, which the short membrane time constants arduously inflict on the action potential generation (in both real neurons and model neurons). Interestingly, one of the indirect conclusions of the current study is that neurons equipped with dendritic plateau potentials may reduce the total number of cells (nodes, units) required to perform robust computations.

Strengths:
The majority of published studies are descriptive in nature. Researchers report what they see or measure. A smaller number of studies embark on a more difficult task, which is to explain the logic and rationale of a particular natural design. The current study falls into that second category. The authors first recognize that conduction delays and noise make asynchrony unavoidable in communication between circuits in the real brain. This poses a fundamental problem for the integration of related inputs in real (noisy) world. Neurons with short membrane time constants can only integrate coincident inputs that arrive simultaneously within 2-3 ms of one another. Then the authors considered the role for dendritic plateau potentials. Glutamate-mediated depolarization events within individual dendritic branches, can remedy the situation by widening the integration time window of neurons. In summary, the authors recognized that one important feature of neurons, their dendrites, are built-in to solve the major problems of rapid signal processing: [1] temporal jitter, [2] variation, [3] stochasticity, and [4] reliability of computation. In one word, the dendritic plateau potentials have evolved in the central nervous systems to make rapid CNS computations robust.

Weaknesses:
The authors made some unsupported statements, which should either be deleted, or thoroughly defended in the manuscript. But first of all, the authors failed to bring this study to the readers who are not experts in computational modeling or Artificial Neural Networks. Critical terms (syntax) and ideas have not been explained. For example: [1] binary feature space? [2] 13 dimensions binary vectors? [3] the binary network could still cope with the loss of information due to the binarization of the continuous coordinates? [4] accurate summation?

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation