Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorNils BroseMax Planck Institute of Experimental Medicine, Göttingen, Germany
- Senior EditorAlbert CardonaUniversity of Cambridge, Cambridge, United Kingdom
Reviewer #1 Public Review
Summary
This paper presents a new, but simple and low-cost technique for multimodal EM imaging that combines the strengths of both volume scanning electron microscopy (SEM) and electron microscopic tomography. The novel ATUM-Tomo approach enables the consecutive inspection of selected areas of interest by correlated serial SEM and TEM, optionally in combination with CLEM, as demonstrated here. The most important feature of ATUM-Tomo, particularly of correlative ATUM-Tomo, is that it can bridge scales, from the cellular to the high-resolution subcellular scale, from micrometer to low nanometer resolution. This is particularly important for ultrastructural analyses of biological regions of interest, which is demonstrated here for focal pathologies or rare cellular and subcellular events. Both imaging modalities are non-destructive, thus allowing re-imaging and hierarchical imaging at the SEM and TEM levels. This is particularly important for precious samples, including human biopsies and samples from complex CLEM experiments. Beyond the demonstrated neuropathology-related application, further use in investigating normal and pathologically altered brains, including human brain tissue samples that require high-resolution SEM and TEM in combination with immunohistochemistry, and virus or tracer injections, would be possible. Thus, ATUM-Tomo provides new possibilities in multimodal volume EM imaging for diverse areas of biological research.
Strengths
This paper is a very nice piece of work, bringing together modern high-end state-of-the-art technology that will allow us to investigate diverse biological questions in different areas of interest and at different scales. The paper is clear and well-written, although some additions are necessary to the methods section and the scientific results as exemplified by investigations of the blood-brain barrier. The discussion would benefit from an expansion of the part dealing with the scientific results. The paper is accompanied by excellent figures, supplemental information, and colored 3D-reconstructions, which makes it easy for the reader to follow the experimental procedure and the scientific context. The authors may consider moving the supplemental figures into the main body of the paper, which would then still contain 'only' eight figures.
Weaknesses
There is some imbalance between the description of the state-of-the-art methodology and the scientific context.
Reviewer #2 Public Review
Summary
Kislinger et al. present a method permitting a targeted, multiscale ultrastructural imaging approach to bridge the resolution gap between large-scale scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The key methodological development consists of an approach to recover sections of resin-embedded material produced by Automated Tape Collecting Ultramicrotomy (ATUM), thereby permitting regions of interest identified by serial section SEM (ATUM-SEM) screening to be subsequently re-examined at higher resolution by TEM tomography (ATUM-Tomo). The study shows that both formvar and permanent marker coatings are in principle compatible with the solvent-based release of pre-screened sections from ATUM tape (carbon nanotubule or Kapton tape). However, a comparative analysis of potential limitations and artifacts introduced by these respective coatings revealed permanent marker to provide a superior coating; permanent marker coatings are more easily and reliably applied to tape with only minor contaminants affecting the recovered section-tape interface with negligible influence on tomogram interpretation. Proof-of-principle is provided by integrating this novel ATUMTomo technique into a technically impressive correlated light and electron microscopy (CLEM) approach specifically tailored to investigate ultrastructural manifestations of trauma-induced changes in blood-brain barrier permeability (Khalin et al., 2022).
Strengths
Schematics and well-constructed figures clearly illustrate the general workflow, light and electron microscope image data are of excellent quality, and the efficacy of the ATUM-Tomo approach is documented by qualitative assessment of ATUM-SEM performance using coated tape variants and a convincing correlation between scanning and transmission electron microscopy imaging modalities. Potential ultrastructural artifacts induced via solvent exposure and any subsequent mechanical stress incurred during section detachment were systematically investigated using appropriate methods and transparently reported. In summary, the presented data are consistent with the study's claims. A major strength of this work includes its general applicability to a broad range of biological questions and ultrastructural targets demanding resolutions exceeding that obtained via serial section and block-face imaging approaches alone. Importantly, this relatively simple and cost-effective technique is widely adopted by electron microscopy laboratories. Its integration into existing ATUM-SEM workflows supports a versatile and non-destructive imaging regime enabling high-resolution details of targeted structures to be interpreted within anatomical and subcellular contexts.
Weaknesses
Given the identified importance of glow-discharge treatment of precoated tape to the flat deposition of sections during ATUM, a corresponding schematic or appropriate reference(s) providing more information about the custom-built tape plasma device would likely be a prerequisite for effective reproduction of this technique in other laboratories.