Pushed to the edge: hundreds of Myosin 10s pack into filopodia and could cause traffic jams on actin

  1. Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA
  2. Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, USA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a response from the authors (if available).

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Derek Applewhite
    Reed College, Portland, United States of America
  • Senior Editor
    Benoît Kornmann
    University of Oxford, Oxford, United Kingdom

Reviewer #1 (Public Review):

Summary:
The manuscript proposes an alternative method by SDS-PAGE calibration of Halo-Myo10 signals to quantify myosin molecules at specific subcellular locations, in this specific case filopodia, in epifluorescence datasets compared to the more laborious and troublesome single molecule approaches. Based on these preliminary estimates, the authors developed further their analysis and discussed different scenarios regarding myosin 10 working models to explain intracellular diffusion and targeting to filopodia.

Strengths:
Overall, the paper is elegantly written and the data analysis is appropriately presented.

Weaknesses:
While the methodology is intriguing in its descriptive potential and could be the beginning of an interesting story, a good portion of the paper is dedicated to the discussion of hypothetical working mechanisms to explain myosin diffusion, localization, and decoration of filopodial actin that is not accompanied by the mandatory gain/loss of function studies required to sustain these claims.

Reviewer #2 (Public Review):

Summary:
The paper sought to determine the number of myosin 10 molecules per cell and localized to filopodia, where they are known to be involved in formation, transport within, and dynamics of these important actin-based protrusions. The authors used a novel method to determine the number of molecules per cell. First, they expressed HALO tagged Myo10 in U20S cells and generated cell lysates of a certain number of cells and detected Myo10 after SDS-PAGE, with fluorescence and a stained free method. They used a purified HALO tagged standard protein to generate a standard curve which allowed for determining Myo10 concentration in cell lysates and thus an estimate of the number of Myo10 molecules per cell. They also examined the fluorescence intensity in fixed cell images to determine the average fluorescence intensity per Myo10 molecule, which allowed the number of Myo10 molecules per region of the cell to be determined. They found a relatively small fraction of Myo10 (6%) localizes to filopodia. There are hundreds of Myo10 in each filopodia, which suggests some filopodia have more Myo10 than actin binding sites. Thus, there may be crowding of Myo10 at the tips, which could impact transport, the morphology at the tips, and dynamics of the protrusions themselves. Overall, the study forms the basis for a novel technique to estimate the number of molecules per cell and their localization to actin-based structures. The implications are broad also for being able to understand the role of myosins in actin protrusions, which is important for cancer metastasis and wound healing.

Strengths:
The paper addresses an important fundamental biological question about how many molecular motors are localized to a specific cellular compartment and how that may relate to other aspects of the compartment such as the actin cytoskeleton and the membrane. The paper demonstrates a method of estimating the number of myosin molecules per cell using the fluorescently labeled HALO tag and SDS-PAGE analysis. There are several important conclusions from this work in that it estimates the number of Myo10 molecules localized to different regions of the filopodia and the minimum number required for filopodia formation. The authors also establish a correlation between number of Myo10 molecules filopodia localized and the number of filopodia in the cell. There is only a small % of Myo10 that tip localized relative to the total amount in the cell, suggesting Myo10 have to be activated to enter the filopodia compartment. The localization of Myo10 is log-normal, which suggest a clustering of Myo10 is a feature of this motor.

Weaknesses:
One main critique of this work is that the Myo10 was overexpressed. Thus, the amount in the cell body compared to the filopodia is difficult to compare to physiological conditions. The amount in the filopodia was relatively small - 100s of molecules per filopodia so this result is still interesting regardless of the overexpression. However, the overexpression should be addressed in the limitations.
The authors have not addressed the potential for variability in transfection efficiency. The authors could examine the average fluorescence intensity per cell and if similar this may address this concern.
The SDS PAGE method of estimating the number of molecules is quite interesting. I really like this idea. However, I feel there are a few more things to consider. The fraction of HALO tag standard and Myo10 labeled with the HALO tagged ligand is not determined directly. It is suggested that since excess HALO tagged ligand was added we can assume nearly 100% labeling. If the HALO tag standard protein is purified it should be feasible to determine the fraction of HALO tagged standard that is labeled by examining the absorbance of the protein at 280 and fluorophore at its appropriate wavelength. The fraction of HALO tagged Myo10 labeled may be more challenging to determine, since it is in a cell lysate, but there may be some potential approaches (e.g. mass spec, HPLC).
In Figure 1B, the stain free gel bands look relatively clean. The Myo10 is from cell lysates so it is surprising that there are not more bands. I am not surprised that the bands in the TMR fluorescence gel are clean, and I agree the fluorescence is the best way to quantitate.
In Figure 3C, the number of Myo10 molecules needed to initiate a filopodium was estimated. I wonder if the authors could have looked at live cell movies to determine that these events started with a puncta of Myo10 at the edge of the cell, and then went on to form a filopodia that elongated from the cell. How was the number of Myo10 molecules that were involved in the initiation determined? Please clarify the assumptions in making this conclusion.
It is stated in the discussion that the amount of Myo10 in the filopodia exceeds the number of actin binding sites. However, since Myo10 contains membrane binding motifs and has been shown to interact with the membrane it should be pointed that the excess Myo10 at the tips may be interacting with the membrane and not actin, which may prevent traffic jams.

Reviewer #3 (Public Review):

Summary:

The unconventional myosin Myo10 (aka myosin X) is essential for filopodia formation in a number of mammalian cells. There is a good deal of interest in its role in filopodia formation and function. The manuscript describes a careful, quantitative analysis of Myo10 molecules in U2OS cells, a widely used model for studying filopodia, how many are present in the cytosol versus filopodia and the distribution of filopodia and molecules along the cell edge. Rigorous quantification of Myo10 protein amounts in a cell and cellular compartment are critical for ultimately deciphering the cellular mechanism of Myo10 action as well as understand the molecular composition of a Myo10-generated filopodium.
Consistent with what is seen in images of Myo10 localization in many papers, the vast majority of Myo10 is in the cell body with only a small percentage (appr 5%) present in filopodia puncta. Interestingly, Myo10 is not uniformly distributed along the cell edge, but rather it is unevenly localized along the cell edge with one region preferentially extending filopodia, presumably via localized activation of Myo10 motors. Calculation of total molecules present in puncta based on measurement of puncta size and measured Halo-Myo10 signal intensity shows that the concentration of motor present can vary from 3 - 225 uM. Based on an estimation of available actin binding sites, it is possible that Myo10 can be present in excess over these binding sites.

Strengths:

The work represents an important first step towards defining the molecular stoichiometry of filopodial tip proteins. The observed range of Myo10 molecules at the tip suggests that it can accommodate a fairly wide range of Myo10 motors. There is great value in studies such as this and the approach taken by the authors gives one good confidence that the numbers obtained are in the right range.

Weaknesses:

One caveat (see below) is that these numbers are obtained for overexpressing cells and the relevance to native levels of Myo10 in a cell is unclear.
An interesting aspect of the work is quantification of the fraction of Myo10 molecules in the cytosol versus in filopodia tips showing that the vast majority of motors are inactive in the cytosol, as is seen in images of cells. This has implications for thinking about how cells maintain this large population in the off-state and what is the mechanism of motor activation. One question raised by this work is the distinction between cytosolic Myo10 and the population found at the 'cell edge' and the filopodia tip. The cortical population of Myo10 is partially activated, so to speak, as it is targeted to the cortex/membrane and presumably ready to go. Providing quantification of this population of motors, that one might think of as being in a waiting room, could provide additional insight into a potential step-by-step pathway where recruitment or binding to the cortical region/plasma membrane is not by itself sufficient for activation.

Specific comments -

  1. It is not obvious whether the analysis of numbers of Myo10 molecules in a cell that is ectopically overexpressing Myo10 is relevant for wild type cells. It would appear to be a significant excess based on the total protein stained blot shown in Fig S1E where a prominent band the size of tagged Myo10 seen in the transfected sample is almost absent in the WT control lane. Ideally, and ultimately an important approach, would be to work with a cell line expressing endogenously tagged Myo10 via genome engineering. This can be complicated in transformed cells that often have chromosomal duplications.

However, even though there is an excess of Myo10 it would appear that activation is still under some type of control as the cytosolic pool is quite large and its localization to the cell edge is not uniform. But it is difficult to gauge whether the number of molecules in the filopodium is the same as would be seen in untransfected cells. Myo10 can readily walk up a filopodium and if excess numbers of this motor are activated they would accumulate in the tip in large numbers, possibly creating a bulge as and indeed it does appear that some tips are unusually large. Then how would that relate to the normal condition?

  1. Measurements of the localization of Myo10 focuses in large part on 'Myo10 punctae'. While it seems reasonable to presume that these are filopodia tips, the authors should provide readers with a clear definition of a puncta. Is it only filopodia tips, which seems to be the case? Does it include initiation sites at the cell membrane that often appear as punctae?
    Along those lines, the position of dim punctae along the length of a filopodium is measured (Fig 3D). The findings suggest that a given filopodium can have more than one puncta which seems at odds if a puncta is a filopodia tip. How frequently is a filopodium with two puncta seen? It would be helpful if the authors provided an example image showing the dim puncta that are not present at the tip.

  2. The concentration of actin available to Myo10 is calculated based on the deduction from Nagy et al (2010) that only 4/13 of the actin monomers in a helical turn are accessible to the Myo10 motor (discussion on pg 9; Fig S4). Subsequent work (Ropars et al, 2016) has shown that the heads of the antiparallel Myo10 dimer are flattened, but the neck is rather flexible, meaning that the motor can a variable reach (36 - 52 nm). Wouldn't this mean that more actin could be accessible to the Myo10 motor than is calculated here?

  3. Quantification of numbers of Myo10 molecules in filopodial puncta (Fig 3C) leads the authors to conclude that 'only ten or fewer Myo10 molecules are necessary for filopodia initiation' (pg 7, top). While this is a reasonable based on the assumption that the formation of a puncta ultimately results from an initiation event, little is known about initiation events and without direct observation of coalescence of Myo10 at the cell edge that leads to formation of a filopodium, this seems rather speculative.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation