Tmem263 deletion disrupts the GH/IGF-1 axis and causes dwarfism and impairs skeletal acquisition

  1. Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
  2. Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
  3. Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland, USA
  4. Cell and Molecular Medicine graduate program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
  5. Research and Development Service, Baltimore Veterans Administration Medical Center, Baltimore, Maryland, USA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Subburaman Mohan
    VA Loma Linda Healthcare System, Loma Linda, United States of America
  • Senior Editor
    Detlef Weigel
    Max Planck Institute for Biology Tübingen, Tübingen, Germany

Reviewer #1 (Public Review):

Summary:
In this study, the authors present a new mouse model with a deletion of the Tmem263 gene, also known as C12orf23, which encodes the transmembrane protein 263.

Strengths:
The study indicates that Tmem263 interacts with growth hormone, and possibly participates in controlling body growth.

Weaknesses (Major):
The current study confirms previous findings using a mouse model of TMEM263 gene deletion. However, it remains descriptive and does not provide critical insights into the mechanism of action of TMEM263 protein. While the study demonstrates Tmem263-mediated reduction in GHR gene expression in the liver and subsequent growth retardation, it does not elucidate the pathway through which Tmem263 affects GHR expression.

Weaknesses (minor):
1. Since GH-resistant dwarfism is typically associated with increased body adiposity and hepatic lipid accumulation, considering the high expression levels of Tmem263 in adipose tissue (Figure 1C), it would be valuable to measure body adiposity and hepatic lipid content.

2. It would be helpful to specify the age at which the growth plate parameters were tested. Additionally, were there any differences observed between male and female mice (Figure 3 L-N)? Information on the local (growth plate) expression of IGF-1, IGF-1R, and GHR would also be beneficial.

3. Given the low levels of blood glucose and serum insulin, it would be relevant to know if the mice were challenged with ITT or GTT.

4. The liver transcriptomics data presented in the study is impressive. However, there seems to be a missed opportunity to delve into the data and identify potential factors involved in the regulation of GHR expression.

5. The effects of whole-body Tmem263 nullification on osteoblast differentiation and function, as well as on osteoclastogenesis, were not investigated in the study. Considering the potential impact on bone health, these aspects could be explored in future research.

Reviewer #2 (Public Review):

Summary: The study demonstrates that deletion of a small cytoplasmic membrane protein, Tmem263, caused severe impairment of longitudinal bone growth and that the impaired bone growth was caused by suppression of expression and/or protein levels of growth hormone receptors in the liver.

Strengths: The experimental design of the study is sound and the results are in general supportive of the conclusions.

Weaknesses: The study lacks mechanistic investigation into how the deletion of a gene corresponding to a small cytoplasmic membrane protein would lead to a substantial reduction in the gene expression of growth hormone receptor, which takes place in the nuclei. Accordingly, the manuscript is of a largely descriptive nature.

Reviewer #3 (Public Review):

Prior studies in humans and in chickens suggested that TMEM263 could play an important role in longitudinal bone growth, but a definitive assessment of the function and potential mechanism of action of this species-conserved plasma membrane protein has been lacking. Here, the authors create a TMEM263 null mouse model and convincingly show a dramatic cessation of post-natal growth, which becomes apparent by day PND21. They report proportional dwarfism, highly significant bone and related phenotypes, as well as notable alterations of hepatic GH signaling to IGF1. A large body of prior work has established an essential role for GH and its stimulation of IGF1 production in liver and other tissues in post-natal growth. On this basis, the authors conclude that the observed decrease in serum IGF1 seen in TMEM263-KO mice is causal for the growth phenotype, which seems likely. Moreover, they ascribe the low serum IGF1 to the observed decreases in hepatic GH receptor (GHR) expression and GHR/JAK2/STAT5 signaling to IGF1, which is plausible but not proven by the experiments presented.

The finding that TMEM263 is essential for normal hepatic GHR/IGF1 signaling is an important, and unexpected finding, one that is likely to stimulate further research into the underlying mechanisms of TMEM263 action, including the distinct possibility that these effects involve direct protein-protein interactions between GHR and TMEM263 on the plasma membrane of hepatocytes, and perhaps on other mouse cell types and tissues as well, where TMEM263 expression is up to 100-fold higher (Fig. 1C).

An intriguing finding of this study, which is under-emphasized and should be noted in the Abstract, is the apparent feminization of liver gene expression in male TMEM263-KO mice, where many male-biased genes are downregulated, and many female-biased genes are upregulated. Further investigation of these liver gene responses by comparison to public datasets could be very useful, as it could help determine: (1) whether the TMEM263 liver phenotype is similar to that of hypophysectomized male mouse liver, where GH and GHR/STAT5/IGF1 signaling are both totally ablated; or alternatively, (2) whether the phenotype is more similar to that of a male mouse given GH as a continuous infusion, which induces widespread feminization of gene expression in the liver, and is perhaps similar to the gene responses seen in the TMEM263-KO mice. Answering this question could provide critical insight into the mechanistic basis for the hepatic effects of TMEM263 gene KO.

One notable weakness of this study is the conclusion (in the Abstract, and elsewhere), that the low serum IGF-I "is due to a deficit in hepatic GH receptor (GHR) expression, and GH-induced JAK2/STAT5 signaling." This conclusion is speculative in the absence of any experimental assessment of the impact of TMEM 263-KO on GHR/IGF1 signaling in other tissues that contribute to systematic IGF1 production and which likely also impact bone growth. More direct evidence for the impact of hepatic IGF1 production per se in this mouse model could be obtained by liver-specific delivery into the TMEM263-KO mice of a constitutively active. STAT5 construct, which was recently reported to normalize hepatic and serum IGF1 levels in liver-specific GHR-KO mice (PMID: 35396838).

Another weakness is the experiment presented in Fig. 5E, which is presented as evidence for the proposed GH resistance of TMEM263-KO mice. This experiment has several design flaws: 1) It uses human GH, which unlike mouse GH, activates mouse prolactin receptor as well as GH receptor; 2) the dose of hGH used, 3µg GH/g BW, is 100 times higher than is required to activate liver STAT5; and 3) the experiment lacks a set of control livers, which are needed to establish the level of STAT5 tyrosine phosphorylation in the absence of exogenous GH treatment. Moreover, if the mice used in Fig. 5E are males (the sex was not specified), then high variability in the basal phospho-STAT5 levels of control livers is expected, in which case n=6 or more individual control male livers may be required.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation