Transposable elements regulate thymus development and function

  1. Institute for Research in Immunology and Cancer, Université de Montréal; Montréal, Canada
  2. Department of Medicine, Université de Montréal; Montréal, Canada
  3. Deeley Research Centre, BC Cancer; Victoria, Canada
  4. Department of Medical Genetics, University of British Columbia; Vancouver, Canada
  5. Department of Computer Science and Operations Research, Université de Montréal; Montréal, Canada
  6. Department of Physics, University of Washington; Seattle, USA
  7. Fred Hutchinson Cancer Center; Seattle, USA
  8. Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center; Houston, USA
  9. Department of Biochemistry and Molecular Medicine, Université de Montréal; Montréal, Canada
  10. Department of Chemistry, Université de Montréal; Montréal, Canada

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Shimon Sakaguchi
    Osaka University, Osaka, Japan
  • Senior Editor
    Tadatsugu Taniguchi
    University of Tokyo, Tokyo, Japan

Reviewer #1 (Public Review):

Summary:
Transposable Elements (TEs) are exogenously acquired DNA regions that have played important roles in the evolutional acquisition of various biological functions. TEs may have been important in the evolution of the immune system, but their role in thymocytes has not been fully clarified.

Using the human thymus scRNA dataset, the authors suggest the existence of cell type-specific TE functions in the thymus. In particular, it is interesting to show that there is a unique pattern in the type and expression level of TEs in thymic antigen-presenting cells, such as mTECs and pDCs, and that they are associated with transcription factor activities. Furthermore, the authors suggested that TEs may be non-redundantly regulated in expression by Aire, Fezf2, and Chd4, and that some TE-derived products are translated and present as proteins in thymic antigen-presenting cells. These findings provide important insights into the evolution of the acquired immune system and the process by which the thymus acquires its function as a primary lymphoid tissue.

Strengths:
1. By performing single-cell level analysis using scRNA-seq datasets, the authors extracted essential information on heterogeneity within the cell population. It is noteworthy that this revealed the diversity of expression not only of known autoantigens but also of TEs in thymic antigen-presenting cells.

2. The attempt to use mass spectrometry to confirm the existence of TE-derived peptides is worthwhile, even if the authors did not obtain data on as many transcripts as expected.

3. The use of public data sets and the clearly stated methods of analysis improved the transparency of the results.

Weaknesses:
1. The authors sometimes made overstatements largely due to the lack or shortage of experimental evidence.

For example in figure 4, the authors concluded that thymic pDCs produced higher copies of TE-derived RNAs to support the constitutive expression of type-I interferons in thymic pDCs, unlike peripheral pDCs. However, the data was showing only the correlation between the distinct TE expression pattern in pDCs and the abundance of dsRNAs. We are compelled to say that the evidence is totally too weak to mention the function of TEs in the production of interferon. Even if pDCs express a distinct type and amount of TE-derived transcripts, it may be a negligible amount compared to the total cellular RNAs. How many TE-derived RNAs potentially form the dsRNAs? Are they over-expressed in pDCs?
The data interpretation requires more caution to connect the distinct results of transcriptome data to the biological significance.

2. Lack of generality of specific examples. This manuscript discusses the whole genomic picture of TE expression. In addition, one good way is to focus on the specific example to clearly discuss the biological significance of the acquisition of TEs for the thymic APC functions and the thymic selection.

In figure 2, the authors focused on ETS-1 and its potential target genes ZNF26 and MTMR3, however, the significance of these genes in NK cell function or development is unclear. The authors should examine and discuss whether the distinct features of TEs can be found among the genomic loci that link to the fundamental function of the thymus, e.g., antigen processing/presentation.

3. Since the deep analysis of the dataset yielded many intriguing suggestions, why not add a discussion of the biological reasons and significance?
For example, in Figure 1, why is TE expression negatively correlated with proliferation? cTEC-TE is mostly postnatal, while mTEC-TE is more embryonic. What does this mean?

4. To consolidate the experimental evidence about pDCs and TE-derived dsRNAs, one option is to show the amount of TE-derived RNA copies among total RNAs. The immunohistochemistry analysis in figure 4 requires additional data to demonstrate that overlapped staining was not caused by technical biases (e.g. uneven fixation may cause the non-specifically stained regions/cells). To show this, authors should have confirmed not only the positive stainings but also the negative staining (e.g. CD3, etc.). Another possible staining control was showing that non-pDC (CD303- cell fractions in this case) cells were less stained by the ds-RNA probe.

Reviewer #2 (Public Review):

Summary: Larouche et al show that TEs are broadly expressed in thymic cells, especially in mTECs and pDCs. Their data suggest a possible involvement of TEs in thymic gene regulation and IFN-alpha secretion. They also show that at least some TE-derived peptides are presented by MHC-I in the thymus.

Strengths: The idea of high/broad TE expression in the thymus as a mechanism for preventing TE-mediated autoimmunity is certainly an attractive one, as is their involvement in IFN-alpha secretion therein. The analyses and experiments presented here are therefore a very useful primer for more in-depth experiments, as the authors point out towards the end of the discussion.

Weaknesses: Throughout the manuscript, most conclusions are presented as proven causal relationships that the current data do not demonstrate. In the abstract, results, and discussion, the following conclusions are drawn that are not supported by the data: a) TEs interact with multiple transcription factors in thymic cells, b) TE expression leads to dsRNA formation, activation of RIG-I/MDA5 and secretion of IFN-alpha, c) TEs are regulated by cell proliferation and expression of KZFPs in the thymus. All these statements derive from correlations. Only one TF has ChIP-seq data associated with it, dsRNA formation and/or IFN-alpha secretion could be independent of TE expression, and whilst KZFPs most likely regulate TEs in the thymus, the data do not demonstrate it. The authors also seem to suggest that AIRE, FEZF2, and CHD4 regulate TEs directly, but binding is not shown. The manuscript needs a thorough revision to be absolutely clear about the correlative nature of the described associations.

On the technical side, there are many dangers about analysing RNA-seq data at the subfamily level and without stringent quality control checks. Outputs may be greatly confounded by pervasive transcription (see PMID 31425522), DNA contamination, and overlap of TEs with highly expressed genes. Whether TE transcripts are independent units or part of a gene also has important implications for the conclusions drawn. I would say that for most purposes of this work, an analysis restricted to independent TE transcripts, with appropriate controls for DNA contamination, would provide great reassurances that the results from subfamily-level analyses are sound. Showing examples from the genome browser throughout would also help.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation