Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorVolker DötschGoethe University Frankfurt, Frankfurt am Main, Germany
- Senior EditorVolker DötschGoethe University Frankfurt, Frankfurt am Main, Germany
Reviewer #1 (Public Review):
Summary:
This study presents careful biochemical experiments to understand the relationship between LRRK2 GTP hydrolysis parameters and LRRK2 kinase activity. The authors report that incubation of LRRK2 with ATP increases the KM for GTP and decreases the kcat. From this, they suppose an autophosphorylation process is responsible for enzyme inhibition. LRRK2 T1343A showed no change, consistent with it needing to be phosphorylated to explain the changes in G-domain properties. The authors propose that phosphorylation of T1343 inhibits kinase activity and influences monomer-dimer transitions.
Strengths:
The strengths of the work are the very careful biochemical analyses and the interesting result for wild-type LRRK2.
Weaknesses:
A major unexplained weakness is why the mutant T1343A starts out with so much lower activity--it should be the same as wild-type, non-phosphorylated protein. Also, if a monomer-dimer transition is involved, it should be either all or nothing. Other approaches would add confidence to the findings.
Reviewer #2 (Public Review):
This study addresses the catalytic activity of a Ras-like ROC GTPase domain of LRRK2 kinase, a Ser/Thr kinase linked to Parkinson's disease (PD). The enzyme is associated with gain-of-function variants that hyper-phosphorylate substrate Rab GTPases. However, the link between the regulatory ROC domain and activation of the kinase domain is not well understood.
It is within this context that the authors detail the kinetics of the ROC GTPase domain of pathogenic variants of LRRK2, in comparison to the WT enzyme. Their data suggest that LRRK2 kinase activity negatively regulates the ROC GTPase activity and that PD variants of LRRK2 have differential effects on the Km and catalytic efficiency of GTP hydrolysis.
Based on mutagenesis, kinetics, and biophysical experiments, the authors suggest a model in which autophosphorylation shifts the equilibrium toward monomeric LRRK2 (locked GTP state of ROC). The authors further conclude that T1343 is a crucial regulatory site, located in the P-loop of the ROC domain, which is necessary for the negative feedback mechanism. Unfortunately, the data do not support this hypothesis, and further experiments are required to confirm this model for the regulation of LRRK2 activity.
Specific comments are below:
- Although a couple of papers are cited, the rationale for focusing on the T1343 site is not evident to readers. It should be clarified that this locus, and perhaps other similar loci in the wider ROCO family, are likely important for direct interactions with the GTP molecule.
- Similar to the above, readers are kept in the dark about auto-phosphorylation and its effects on the monomer/dimer equilibrium. This is a critical aspect of this manuscript and a major conceptual finding that the authors are making from their data. However, the idea that auto-phosphorylation is (likely) to shift the monomer/dimer equilibrium toward monomer, thereby inactivating the enzyme, is not presented until page 6, AFTER describing much of their kinetics data. This is very confusing to readers, as it is difficult to understand the meaning of the data without a conceptual framework. If the model for the LRRK2 function is that dimerization is necessary for the phosphorylation of substrates, then this idea should be presented early in the introduction, and perhaps also in the abstract. If there are caveats, then they should be discussed before data are presented. A clear literature trail and the current accepted (or consensus) mechanism for LRRK2 activity is necessary to better understand the context for these data.
- Following on the above concepts, I find it interesting that the authors mention monomeric cyotosolic states, and kinase-active oligomers (dimers??), with citations. Again here, it would be useful to be more precise. Are dimers (oligomers?) only formed at the membrane? That would suggest mechanisms involving lipid or membrane-attached protein interactions. Also, what do the authors mean by oligomers? Are there more than dimers found localized to the membrane?
- Fig 5 is a key part of their findings, regarding the auto-phosphorylation induced monomer formation of LRRK2. From these two bar graphs, the authors state unequivocally that the 'monomer/dimer equilibrium is abolished', and therefore, that the underlying mechanism might be increased monomerization (through maintenance of a GTP-locked state). My view is that the authors should temper these conclusions with caveats. One is that there are still plenty of dimers in the auto-phosphorylated WT, and also in the T1343A mutant. Why is that the case? Can the authors explain why only perhaps a 10% shift is sufficient? Secondly, the T1343A mutant appears to have fewer overall dimers to begin with, so it appears to readers that 'abolition' is mainly due to different levels prior to ATP treatment at 30 deg. I feel these various issues need to be clarified in a revised manuscript, with additional supporting data. Finally, on a minor note, I presume that there are no statistically significant differences between the two sets of bar graphs on the right panel. It would be wise to place 'n.s.' above the graphs for readers, and in the figure legend, so readers are not confused.
- Figure 6B, Westerns of phosphorylation, the lanes are not identified and it is unclear what these data mean.