Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorAna Maria FariaUniversidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Senior EditorTadatsugu TaniguchiUniversity of Tokyo, Tokyo, Japan
Reviewer #1 (Public Review):
Summary:
The authors explore mechanisms through which T-regs attenuate acute pain using a heat sensitivity paradigm. Analysis of available transcriptomic data revealed expression on the proenkephalin (Penk) gene in T-regs. The authors explore the contribution of T-reg Penk in the resolution of heat sensitivity.
Strengths:
Investigating the potential role of T-reg Penk in the resolution of acute pain is a strength.
Weaknesses:
The overall experimental design is superficial and lacks sufficient rigor to draw any meaningful conclusions.
For instance:
- The were no TAM controls. What is the evidence that TAM does not alter heat-sensitive receptors.
- There are no controls demonstrating that recombination actually occurred. How do the authors know a single dose of TAM is sufficient?
- Why was only heat sensitivity assessed? The behavioral tests are inadequate to derive any meaningful conclusions. Further, why wasn't the behavioral data plotted longitudinally
Reviewer #2 (Public Review):
Summary:
The present study addresses the role of enkephalins, which are specifically expressed by regulatory T cells (Treg), in sensory perception in mice. The authors used a combination of transcriptomic databases available online to characterize the molecular signature of Treg. The proenkephalin gene Penk is among the most enriched transcripts, suggesting that Treg plays an analgesic role through the release of endogenous opioids. In addition, in silico analysis suggests that Penk is regulated by the TNFR superfamily; this being experimentally confirmed. Using flow cytometry analysis, the authors then show that Penk is mostly expressed in Treg of the skin and colon, compared to other immune cells. Finally, genetic conditional excision of Penk, selectively in Treg, results in heat hypersensitivity, as assessed by behavior analysis.
Strengths:
The manuscript is clear and reveals a previously unappreciated role of enkephalins, as released by immune cells, in sensory perception. The rationale in this manuscript is easy to follow, and conclusions are well supported by data.
Weaknesses:
The sensory deficit of Penk cKO appears to be quite limited compared to control littermates.
Reviewer #3 (Public Review):
Summary:
Aubert et al investigated the role of PENK in regulatory T cells. Through the mining of publicly available transcriptome data, the authors confirmed that PENK expression is selectively enriched in regulatory but not conventional T cells. Further data mining suggested that OX40, 4-1BB as well as BATF, can regulate PENK expression in Tregs. The authors generated fate-mapping mice to confirm selective PENK expression in Tregs and activated effector T cells in the colon and spleen. Interestingly, transgenic mice with conditional deletion of PENK in Tregs resulted in hypersensitivity to heat, which the authors attributed to heat hyperalgesia.
Strengths:
The generation of transgenic mice with conditional deletion of PENK in foxp3 and PENK fate-mapping is novel and can potentially yield significant findings. The identification of upstream signals that regulate PENK is interesting but unlikely to be the main reason why PENK is predominantly expressed in Tregs as both BATF and TNFR are expressed in effector T cells.
Weaknesses:
There is a lack of direct evidence and detailed analysis of Tregs in the control and transgenic mice to support the authors' hypothesis. PENK was previously reported to be expressed in skin Tregs and play a significant role in regulating skin homeostasis: this should be considered as an alternative mechanism that may explain the changed sensitivity to heat observed in the paper.